Math 210A Lecture Notes

Professor: Romyar Sharifi Scribe: Daniel Raban

Contents

1	Intr	oduction to Category Theory	5		
	1.1	Categories and subcategories	5		
	1.2	Monoids and groups	6		
	1.3	Rings, fields, and modules	7		
2	Moi	phisms, Functors, and Commutative Diagrams	8		
	2.1	Types of morphisms	8		
	2.2	Functors	8		
	2.3	Diagrams	9		
	2.4	Yoneda Embedding	10		
3	The	Yoneda Lemma	11		
	3.1	Two versions of the Yoneda lemma	11		
	3.2	Partially ordered sets	12		
4	Limits and colimits				
4	Lim	its and commits	то		
4	Lim 4.1				
4			13		
4 5	$\begin{array}{c} 4.1 \\ 4.2 \end{array}$	Limits	13 14		
-	$\begin{array}{c} 4.1 \\ 4.2 \end{array}$	Limits	 13 13 14 17 17 		
-	4.1 4.2 Equ	Limits	13 14 17		
-	4.1 4.2 Equ 5.1	Limits Colimits Colimits More Limits ivalences, Cayley's Theorem, and More Limits Equivalence of categories Cayley's theorem	13 14 17 17		
-	 4.1 4.2 Equencies 5.1 5.2 5.3 	Limits Colimits Colimits Colimits ivalences, Cayley's Theorem, and More Limits Equivalence of categories Cayley's theorem Completeness	13 14 17 17 17 18		
-	4.1 4.2 Equ 5.1 5.2	Limits Colimits Colimits More Limits ivalences, Cayley's Theorem, and More Limits Equivalence of categories Cayley's theorem	13 14 17 17 17 18 18		
-	 4.1 4.2 Equencies 5.1 5.2 5.3 5.4 5.5 	Limits Colimits Colimits Image: Cayley's Theorem, and More Limits Equivalence of categories Cayley's theorem Cayley's theorem Cayley's theorem Initial and terminal objects Image: Cayley's theorem	13 14 17 17 17		
5	 4.1 4.2 Equencies 5.1 5.2 5.3 5.4 5.5 	Limits Colimits ivalences, Cayley's Theorem, and More Limits Equivalence of categories Cayley's theorem Completeness Initial and terminal objects Sequential limits and colimits	13 14 17 17 17 18 18 18 19		

7	Representable Functors and Free Groups	23
	7.1 Representable functors	23
	7.2 Free groups	23
8	Free Groups, Normal Subgroups, and Quotient Groups	25
	8.1 Free groups	25
	8.2 Normal subgroups and quotient groups	26
9	Equalizers, Kernels, and Ideals	27
	9.1 Equalizers and coequalizers	27
	9.2 Kernels and ideals	29
10	Images, Coimages, and Generating Sets	31
	10.1 Images	31
	10.2 Coimages	32
	10.3 Generating sets	33
11	Group Presentations and Automorphisms	34
	11.1 Cyclic groups and principal ideals	34
	11.2 Presentations of groups	34
	11.3 Automorphism groups	35
12	Automorphisms, Lagrange's Theorem, Isomorphism Theorems, and Semi	
12	 Automorphisms, Lagrange's Theorem, Isomorphism Theorems, and Semi rect Products 12.1 Automorphisms and Lagrange's theorem	di- 37 37 38 38
	rect Products12.1 Automorphisms and Lagrange's theorem12.2 The second and third isomorphism theorems	37 37 38 38
18	rect Products 12.1 Automorphisms and Lagrange's theorem 12.2 The second and third isomorphism theorems 12.3 Semidirect products 12.3 Semidirect products 6 Krull-Schmidt, Structure of Finitely Generated Abelian Groups, and Group Actions 13.1 The Krull-Schmidt theorem 13.2 The structure theorem for finitely generated abelian groups	37 37 38 38 38 40 40
18	rect Products 12.1 Automorphisms and Lagrange's theorem 12.2 The second and third isomorphism theorems 12.3 Semidirect products 12.3 Semidirect products Krull-Schmidt, Structure of Finitely Generated Abelian Groups, and Group Actions 13.1 The Krull-Schmidt theorem 13.2 The structure theorem for finitely generated abelian groups 13.3 Group actions	37 37 38 38 40 40 40 40 41
18	rect Products 12.1 Automorphisms and Lagrange's theorem 12.2 The second and third isomorphism theorems 12.3 Semidirect products 12.3 Semidirect products Krull-Schmidt, Structure of Finitely Generated Abelian Groups, and Group Actions 13.1 The Krull-Schmidt theorem 13.2 The structure theorem for finitely generated abelian groups 13.3 Group actions Orbit-Stabilizer and Symmetric Groups	37 37 38 38 40 40 40 40 41 43
18	rect Products 12.1 Automorphisms and Lagrange's theorem 12.2 The second and third isomorphism theorems 12.3 Semidirect products 12.3 Semidirect products 12.4 Krull-Schmidt, Structure of Finitely Generated Abelian Groups, and Group Actions 13.1 The Krull-Schmidt theorem 13.2 The structure theorem for finitely generated abelian groups 13.3 Group actions 13.4 Orbit-Stabilizer and Symmetric Groups 14.1 The orbit-stabilizer theorem	37 37 38 38 38 40 40 40 40 41 43 43
1 3 14	rect Products 12.1 Automorphisms and Lagrange's theorem 12.2 The second and third isomorphism theorems 12.3 Semidirect products 12.3 Semidirect products 12.3 Semidirect products 12.4 Krull-Schmidt, Structure of Finitely Generated Abelian Groups, and Group Actions 13.1 The Krull-Schmidt theorem 13.2 The structure theorem for finitely generated abelian groups 13.3 Group actions 13.4 Orbit-Stabilizer and Symmetric Groups 14.1 The orbit-stabilizer theorem 14.2 Action of symmetric groups	37 37 38 38 38 40 40 40 40 41 43 43 43
1 3 14	rect Products 12.1 Automorphisms and Lagrange's theorem 12.2 The second and third isomorphism theorems 12.3 Semidirect products 12.3 Semidirect products 12.3 Semidirect products 12.4 Krull-Schmidt, Structure of Finitely Generated Abelian Groups, and Group Actions 13.1 The Krull-Schmidt theorem 13.2 The structure theorem for finitely generated abelian groups 13.3 Group actions 13.4 The orbit-stabilizer and Symmetric Groups 14.1 The orbit-stabilizer theorem 14.3 Alternating groups	37 37 38 38 40 40 40 40 41 43 43 43 43

15.3 p -groups	48
16 Sylow Theorems 16.1 Sylow p-subgroups 16.2 Sylow theorems	50 50 50
17 Applications of the Sylow theorems 17.1 Groups of order p^n , pq , and p^2q 17.2 Subgroups of S_n	52 52 52
18 Composition Series 18.1 Restrictions on simple groups 18.2 Composition series	54 54 54
19 The Jordan-Hölder Theorem and Solvable Groups 19.1 The Jordan-Hölder theorem 19.2 Solvable groups	56 56 56
20 Schreier's Refinement Theorem and Nilpotent Groups 20.1 Schreier's refinement theorem 20.2 Nilpotent groups	58 58 58
21 Frattini's Argument and Characterizations of Nilpotent Groups 21.1 Frattini's argument21.2 Characterizations of nilpotent groups21.3 Linear groups	60 60 60 61
22 Properties of Linear Groups 22.1 The special linear group $SL_n(F)$	62 62 63
23 Principal Ideal Domains, Maximal Ideals, and Prime Ideals 23.1 Group extensions	64 64 65 66
24 Artinian and Noetherian Rings 24.1 Maximal ideals 24.2 Artinian and noetherian rings	67 67 67

25 Localization of Rings	70
25.1 Construction and properties	70
25.2 Examples of localizations	71
26 Ideals of Localizations, Hilbert's Basis Theorem, and UFDs	73
26.1 Ideals of localizations	73
26.2 Hilbert's basis theorem	73
26.3 Unique factorization domains	74
27 Unique Factorization in PIDs and Polynomials, Gauss' Lemma	a, and
Eisenstein's Criterion	75
27.1 Unique factorization in PIDs	75
27.2 Gauss' lemma and unique factorization of polynomials over a UFD $$.	75
27.3 Eisenstein's criterion	76

1 Introduction to Category Theory

1.1 Categories and subcategories

Definition 1.1. A category C is

- 1. a class¹ Obj(\mathcal{C}) of **objects**,
- 2. for each $A, B \in \text{Obj}(\mathcal{C})$, a set $\text{Hom}_{\mathcal{C}}(A, B)$ of **morphisms** from A to B (we write $f: A \to B$ for $f \in \text{Hom}_{\mathcal{C}}(A, B)$),
- 3. a composition map $\operatorname{Hom}_{\mathcal{C}}(A, B) \times \operatorname{Hom}_{\mathcal{C}}(B, C) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$ for all $A, B, C \in \operatorname{Obj}(\mathcal{C})$ (we write this as $(f, g) \mapsto g \circ f$),

such that

- 1. for each $A \in \text{Obj}(\mathcal{C})$, we have an **identity morphism** $\text{id}_A : A \to A$ such that $f \circ \text{id}_A = f$ and $\text{id}_A \circ g = g$ for all $f : A \to B, g : B \to A$ and $B \in \text{Obj}(\mathcal{C})$.
- 2. $h \circ (g \circ f) = (h \circ g) \circ f$ for all $f : A \to B, g : B \to C, h : C \to D$ with $A, B, C, D \in Obj(\mathcal{C})$.

Notation: we usually say $A \in \mathcal{C}$ to mean $A \in Obj(\mathcal{C})$.

Definition 1.2. A category is small if $Obj(\mathcal{C})$ is a set.

Example 1.1. Set is the category of sets. $Obj(Set) = {sets}$. $Hom_{Set}(A, B) = {functions f : A \to B}$.

Definition 1.3. A semigroup S is a pair (S, \cdot) of a set S and a binary operation $\cdot : S \times S \to S$ on S that is associative. A homomorphism of semigroups is a function $f: S \to T$ of semigroups such that $f(a \cdot S b) = f(a) \cdot T f(b)$ for all $a, b \in S$.

The idea of a homomorphism is that the function "respects" the operations on S and T. Sometimes, we write ab when we mean $a \cdot b$.

Example 1.2. The category Semi is the category with objects being semigroups and morphisms being homomorphisms of semigroups.

Definition 1.4. A subcategory \mathcal{D} of a category \mathcal{C} is a category with

- 1. $\operatorname{Obj}(\mathcal{D})$ a subclass of $\operatorname{Obj}(\mathcal{C})$,
- 2. $\operatorname{Hom}_{\mathcal{D}}(A, B) \subseteq \operatorname{Hom}_{\mathcal{C}}(A, B)$ for all $A, B \in \mathcal{D}$,
- 3. the composition in \mathcal{D} agrees with the composition in \mathcal{C} ,
- 4. the identity $\mathrm{id}_A \in \mathrm{Hom}_{\mathcal{C}}(A, A)$ for $A \in \mathcal{D}$ is the identity in $\mathrm{Hom}_{\mathcal{D}}(A, A)$.

Example 1.3. Here is a nonexample. Semi is not a subcategory of Set.

¹We cannot use sets here because, for example, there is no set of all sets.

1.2 Monoids and groups

Definition 1.5. A monoid S is a semigroup with an identity element $e \in S$ such that ex = x = xe for all $x \in S$. A homorphism of monoids is a function $f : S \to T$ of monoids such that f(ab) = f(a)f(b) for all $a, b \in S$ and $f(e_S) = e_T$.

Example 1.4. The category Mon is the category with objects being monoids and morphisms being homomorphisms of monoids. Mon is a subcategory of Semi.

Example 1.5. A monoid G gives a category \mathbb{G} with $Obj(\mathbb{G}) = \{G\}$ and $Hom_{\mathbb{G}}(G, G) = \{elements of G\} = G$. For all $g, h \in G$, we define $g \circ h = g \cdot h$.

This goes the other way, as well. If you have a category with one object, then its morphisms form a monoid.

Definition 1.6. A group G is a monoid in which every element has an inverse; i.e. for every $g \in G$, there exists a $g^{-1} \in G$ such that $g \cdot g^{-1} = e = g^{-1} \cdot g$.

Example 1.6. Grp is the category of groups. The objects are groups, and the morphisms are homomorphisms of semigroups between groups ("group homomorphisms"). These are also monoid homomorphisms because f(g) = f(eg) = f(e)f(g) implies that e = f(e) by multiplication by $f(g)^{-1}$. Also, $e = f(gg^{-1}) = f(g)f(g^{-1})$ implies that $f(g^{-1}) = f(g)^{-1}$.

Definition 1.7. A subcategory \mathcal{D} of a category \mathcal{C} is **full** if $\operatorname{Hom}_{\mathcal{D}}(A, B) = \operatorname{Hom}_{\mathcal{C}}(A, B)$ for all $A, B \in \mathcal{D}$.

Example 1.7. Grp is a full subcategory of Semi.

Definition 1.8. A group G is abelian if its operation is commutative; i.e. gh = hg for all $g, h \in G$.

Example 1.8. Ab is the category of abelian groups. This is a full subcategory of Grp. with objects the abelian groups.

Notation: If the operation on a group is +, then the group is assumed to be abelian. The identity element is denoted 0, and the inverse of a is denoted -a.

Definition 1.9. Cyclic groups are the groups $\langle x \rangle$ consisting of powers

$$x^{n} = \begin{cases} x \cdots x & n > 0\\ e & n = 0\\ (x^{-n})^{-1} & n < 0 \end{cases}$$

of a single element.

Example 1.9. $\mathbb{Z} = \langle 1 \rangle$, and $\mathbb{Z}/n\mathbb{Z} = \langle 1 \pmod{n} \rangle = \{ \text{integers } (\text{mod } n) \}.$

Definition 1.10. A ring R is a triple $(R, +, \cdot)$ of an abelian group (R, +) and an associative operation \cdot on R with identity denoted 1 such that the distributive laws a(b+c) = ab + ac and (a + b)c = ac + bc hold. A ring homomorphism is a function $f : R \to R'$ of rings such that f(x + y) = f(x) + f(y), f(xy) = f(x)f(y), and f(1) = 1 for all $x, y \in R$.

1.3 Rings, fields, and modules

Definition 1.11. A commutative ring is a ring for which \cdot is commutative. A division ring (or skew field) is a ring such that $R \setminus \{0\}$ is a group under \cdot . A field is a commutative division ring.

Example 1.10. Ring is the category of rings. It has the full subcategories CRing of commutative rings and Fld of fields.

Definition 1.12. A (left) module A for a ring R is a triple $(A, +, \cdot)$, where (A, +) is an abelian group and $\cdot : R \times A \to A$

- 1. is associative ((rs)a = r(sa) for all $r, s \in R$ and $a \in A$)
- 2. satisfies $1 \cdot a = a$ for all $a \in A$
- 3. is distributive $((r+s)a = ra + sa \text{ and } r(a+b) = ra + rb \text{ for all } r, s \in R \text{ and } a, b \in A)$.

2 Morphisms, Functors, and Commutative Diagrams

2.1 Types of morphisms

Definition 2.1. Let C be a category. C is **locally small** if Hom(A, B) is always a set. C is **small** if Obj(C) is a set and C is locally small.

Definition 2.2. Let $f: X \to Y$ be a morphism in C. f is a **monomorphism** if for any $g, h: U \to X$, fg = fh implies that g = h (f is left-cancellative). f is a **epimorphism** if for any $g, h: Y \to Z$, gf = hf implies that g = h (f is right-cancellative).

Example 2.1. The inclusion $i : \mathbb{Z} \to \mathbb{Q}$ is an epimorphism in the category of rings.

Definition 2.3. If $C \in \text{Obj}(\mathbb{C})$, a **subobject** (A, i) of C is a pair such that $i : A \to C$ is a monomorphism. A **quotient** (B, π) of C is a pair such that $\pi : C \to B$ is an epimorphism.

2.2 Functors

Definition 2.4. Let \mathcal{C}, \mathcal{D} be categories. A (covariant) functor $F : \mathcal{C} \to \mathcal{D}$ is a map $F : \operatorname{Obj}(\mathcal{C}) \to \operatorname{Obj}(\mathcal{D})$ and a map $F : \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ such that $F(gf) = F(g) \circ F(f)$ and $F(1_X) = 1_{F(X)}$.

There is a dual notion, in which the functor switches the direction of the arrows (composition goes backwards).

Definition 2.5. Let C be a category. The **opposite category** C^{op} is the category with the same objects but the morphisms are reversed in direction; i.e. $f \in \text{Hom}_{\mathcal{C}}(A, B)$ corresponds to $f^{op} \in \text{Hom}_{\mathcal{C}^{op}}(B, A)$.

With this definition, the dual type of functor can be viewed as follows.

Definition 2.6. A contravariant functor $F : \mathcal{C} \to \mathcal{D}$ is a covariant functor $F : \mathcal{C}^{op} \to \mathcal{D}$.

Example 2.2. Forgetful functors are functors which "forget information." The forgetful functor from Ab \rightarrow Set takes an abelian group and gives back the underlying set. The forgetful functor from Ring \rightarrow Set takes a ring and gives back the underlying set. The forgetful functor from Ring \rightarrow Ab takes a ring and gives back the underlying abelian group.

Example 2.3. If $A \in \text{Obj}(\mathcal{C})$, the functor $h_A : \mathcal{C}^{op} \to \text{Set}$ is given by $h_A(B) = \text{Hom}_{\mathcal{C}}(B, A)$.

Remark 2.1. A contravariant functor $\mathcal{C} \to \text{Set}$ is sometimes called a **presheaf**.

Definition 2.7. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor. F is **faithful** if $F : \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ is injective for all X, Y. \mathcal{F} is **full** if $F : \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ is surjective for all X, Y. F is **fully faithful** if F is both faithful and full.

Note that a category \mathcal{E} is a subcategory of \mathcal{C} if $\operatorname{Obj}(\mathcal{E}) \subseteq \operatorname{Obj}(\mathcal{C})$ and the inclusion functor $i : \mathcal{E} \to \mathcal{C}$ is full.

Example 2.4. Ab is a full subcategory of Grp.

2.3 Diagrams

Definition 2.8. A directed graph G is a set V_G of vertices (dots) and a set E_G of arrows (ordered pairs $(v, w) \in V_G \times V_G$).

Definition 2.9. $\mathbb{F}(G)$ is the **free category** on G if $Obj(\pi(G)) = V_G$ and $Hom_{\mathbb{F}(G)}(v, w) = \{e_n e_{n-1} \cdots e_1 : e_i \in E_G(v_{i-1}, v_i), v_0 = v, v_n = w\}$. Composition is concatenation of words.

Definition 2.10. A *G*-shaped diagram in a category \mathcal{C} is a functor $\mathbb{F}(G) \to \mathcal{C}$.

Definition 2.11. A commutative diagram is a *G*-shaped diagram that is constant on $\text{Hom}_{\mathcal{C}}(X, Y)$ for each pair X, Y. In other words, taking any path in the diagram should give the same result. For example, in the diagram below, $g_2 \circ f_1 = f_2 \circ g_1$.

$$\begin{array}{ccc} A \xrightarrow{f_1} & B \\ \downarrow g_1 & \downarrow g_2 \\ C \xrightarrow{f_2} & D \end{array}$$

Definition 2.12. Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors. A **natural transformation** $\eta : F \to G$ is a collection of maps $\eta_X : F(X) \to G(X)$ for each $X \in \text{Obj}(\mathbb{C})$ such that if $f : X \to Y$, then

$$F(X) \xrightarrow{\eta_X} G(X)$$
$$\downarrow^{F(f)} \qquad \qquad \downarrow^{G(f)}$$
$$F(Y) \xrightarrow{\eta_Y} G(Y)$$

Example 2.5. Look at the category Vec_K . Let $V^* = \operatorname{Hom}_K(V, K)$, and let $(-)^* : \operatorname{Vec}_K \to \operatorname{Vec}_K$. There is a natural transformation $\eta : \mathbb{1} \to (-)^{**}$ sending $V \to V^{**}$ by sending $v \mapsto (\lambda \mapsto \lambda(v))$.

Definition 2.13. η is a **natural isomorphism** if each η_X is an isomorphism.

Remark 2.2. In this case, $\{\eta_X^{-1}\}$ will also be a natural transformation.

Definition 2.14. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor. F is an **equivalence of categories** if there is a functor $G : \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $FG \to \mathbb{1}_{\mathcal{D}}$, $GF \cong \mathcal{C}$. In this case, G is called a **quasi-inverse**.

Definition 2.15. Let \mathcal{C}, \mathcal{D} be categories. The **functor category** Fun $(\mathcal{C}, \mathcal{D})$ is the category with objects functors $\mathcal{C} \to \mathcal{D}$ and morphisms natural transformations.

Example 2.6. If \mathcal{C} is small and \mathcal{D} is locally small, then $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ is locally small.

$\mathbf{2.4}$ Yoneda Embedding

Lemma 2.1. Let \mathcal{C} be a small category. Let $\operatorname{Yo} : \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ be the functor with $A \mapsto h_A(B) = \operatorname{Hom}_{\mathcal{C}}(B, A)$. Then Yo is a fully faithful functor.

Proof. To show that Yo is faithful, suppose that Yo(f) = Yo(g). Then $f = Yo(f)_A(1_A) =$ $\operatorname{Yo}(g)_A(1_A) = g.$

We will show that Yo is full next time.

3 The Yoneda Lemma

3.1 Two versions of the Yoneda lemma

Lemma 3.1 (Yoneda). Let \mathcal{C} be a small category, and let $h^{\mathcal{C}} : \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ be $h^{\mathcal{C}}(A) = h^{A} = \operatorname{Hom}_{\mathcal{C}}(\cdot, A)$ and if $f : A \to B$, then $h^{\mathcal{C}}(f)_{X} : \operatorname{Hom}(X, A) \to \operatorname{Hom}(X, B)$ sends $(g : X \to A) \mapsto (f \circ g : X \to B)$. Then $h^{\mathcal{C}}$ is fully faithful.

Proof. To show that $h^{\mathcal{C}}$ is faithful, let $f, g : A \to B$, and suppose that $h^{\mathcal{C}}(f) = h^{\mathcal{C}}(g)$. Then $h^{\mathcal{C}}(f)A, h^{\mathcal{C}}(g)_A : \operatorname{Hom}(A, A) \to \operatorname{Hom}(A, B)$ maps $1_A \mapsto f \circ 1_A = f$ and $1_A \mapsto g \circ 1_A = g$. So f = g.

To show that $h^{\mathcal{C}}$ is full, let $\{\eta_X\}: h^A \to h^B$. We claim that $h^{\mathcal{C}}(\eta_A(1_A)) = \eta$.

$$\begin{array}{ccc}
h^{A}(A) & \stackrel{\eta_{A}}{\longrightarrow} & h^{B}(A) \\
\downarrow h^{A}(f) & \downarrow h^{B}(f) \\
h^{A}(C) & \stackrel{\eta_{C}}{\longrightarrow} & h^{B}(C)
\end{array}$$

This is

$$\begin{array}{ccc} \operatorname{Hom}(A,A) & \stackrel{\eta_A}{\longrightarrow} & \operatorname{Hom}(B,B) \\ & & & \downarrow h^A(f) & & \downarrow h^B(f) \\ \operatorname{Hom}(C,A) & \stackrel{\eta_C}{\longrightarrow} & \operatorname{Hom}(C,B). \end{array}$$

Since this diagram commutes, $\eta_C \circ h^A(f) = h^B(f) \circ \eta_A$. So they are equal on evaluation on an element. Then $\eta_C \circ h^A(f)[1_A] = h^B(f) \circ \eta_A[1_A]$, so $\eta_C[f] = \eta_A[1_A] \circ f$. In particular, $\eta = h^C(\eta_A[1_A])$.

Lemma 3.2 (Yoneda, strengthened). Let C be a small category, let $h^{C} : C \to \operatorname{Fun}(C^{op}, \operatorname{Set})$ be the Yoneda embedding, and let $F : C^{op} \to \operatorname{Set}$. Then $\operatorname{Nat}(h^{A}, F)$ is in bijection with F(A).

Proof. Define Φ : Nat $(h^A, F) \to F(A)$ given by η_A : $h^A(A) \to F(A)$, which sends $1_A \mapsto \eta_A(1_A)$. Define $\Psi : F(A) \to \operatorname{Nat}(h^A, F)$. Then, for $x \in F(A)$, $\Psi(x)_B : h^A(B) = \operatorname{Hom}(B, A) \to F(B)$ is $\Psi(x) = \operatorname{ev}_x \circ F$.

We claim that $\Phi \circ \Psi$ is the identity on F(A). Let $x \in F(A)$. Then $\Phi(\Psi(x)) = \Phi(\operatorname{ev}_x \circ F) = \operatorname{ev}_x \circ 1_{F(A)} = x$. $(\Psi \circ \Phi)(\eta) = \Psi(\eta_A(1_A)) = \operatorname{ev}_{\eta_A(1_A)} \circ F$. Let $f : B \to A$. Then

$$\begin{array}{ccc} \operatorname{Hom}(A,A) & \xrightarrow{\eta_A} & F(A) \\ & & & \downarrow^{h^A(f)} & & \downarrow^{F(f)} \\ \operatorname{Hom}(B,A) & \xrightarrow{\eta_B} & F(B). \end{array}$$

So $F(f) \circ \eta_A = \eta_B \circ h^A(f)$, which means $F(f) \circ \eta_A(1_A) = \eta_B \circ h^A(f)(1_A)$. The left hand side is $\Phi \circ \Phi(\eta)_B[f]$, and the right hand side is $\eta_B(f)$. Therefore, $\Psi \circ \Phi(\eta) = \eta$.

This form of the Yoneda lemma implies the previous version.

Corollary 3.1 (Yoneda lemma). Let \mathcal{C} be a small category, and let $h^{\mathcal{C}} : \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$. Then $h^{\mathcal{C}}$ is fully faithful.

Proof. Let $B \in \text{Obj}(\mathcal{C})$. Consider $F = h^B - \text{Hom}_{\mathcal{C}}(\cdot, B)$. Then $\text{Nat}(h^A, h^B)$ is in bijection (via F) with $h^B(A) = \text{Hom}_{\mathcal{C}}(A, B)$.

3.2 Partially ordered sets

Definition 3.1. A partially ordered set (poset) is a set S with a relation \leq on S such that

- 1. $x \leq x$ for all $x \in S$,
- 2. if $x \leq y$ and $y \leq x$, then x = y,
- 3. if $x \leq y$ and $y \leq z$, then $x \leq z$.

We can turn a poset into a category. Let $Obj(\mathcal{C}_S) = S$ and

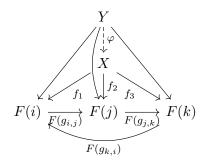
$$\operatorname{Hom}_{\mathcal{C}_S}(X,Y) = \begin{cases} \{\operatorname{unique morphism}\} & x \leq y \\ \varnothing & \text{otherwise} \end{cases}$$

4 Limits and colimits

4.1 Limits

Definition 4.1. Let I be a small index category, and let $F : I \to C$ be a functor. A **limit** lim F is an object X with morphisms $f_i : X \to F(i)$, characterized by the following properties:

- 1. If $g_{i,j}: F(i) \to F(j)$ is a morphism, then $f_j = F(g_{i,j}) \circ f_i$.
- 2. Any Y with this property factors through X; i.e. there exists an unique $\varphi: Y \to X$ such that $f'_i = f_i \circ \varphi$ for all i.



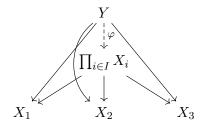
The second property is called a **universal property**.

Remark 4.1. The limit includes the data of the f_{α} maps.

Proposition 4.1. If it exists, $\lim F$ is unique up to isomorphism. Moreover, this isomorphism is unique,

Proof. Suppose $(X, \{f_{\alpha}\})$ and $(Y, \{f'_{\alpha}\})$ are both limits of F. Since both of them are limits, let $\phi: X \to Y$ and $\psi: Y \to X$ be the unique maps given by the universal property. \Box

Definition 4.2. Let *I* be a discrete category (only identity morphisms). Then $F: I \to C$ is determined by a collection $(X_i)_{i \in I}$ of objects. Then the **product** is $\prod_{i \in I} X_i = \lim F$.



For the morphisms, we have

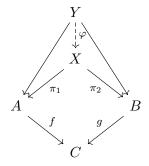
$$\operatorname{Hom}_{\mathcal{C}}(Z, \prod X_i) \simeq \prod \operatorname{Hom}_{\mathcal{C}}(Z, X_i).$$

Example 4.1. In the category of sets, the product is the set-theoretic product.

Example 4.2. In Ab, Grp, and Mod, the product is the usual product, as well.

Example 4.3. In C = Fld, the product is not the usual product. $\mathbb{Q} \times \mathbb{Q}$ is not a field. You can also check that the product of $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2})$ does not exist.

Definition 4.3. The *pull-back* $X = A \times_C B$ is a limit of A and B with morphisms $f: A \to C$ and $g: B \to C$.



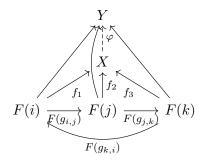
Remark 4.2. Even though we write the pull-back as $X = A \times_C B$, it depends on the morphisms f, g.

Example 4.4. In Set, the pullback is $A \times_C B = \{(a, b) \in A \times B : f(a) = g(b)\}.$

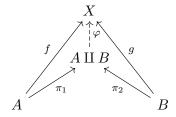
4.2 Colimits

Definition 4.4. Let I be a small index category, and let $F : I \to C$ be a functor. A **colimit** colim F is an object X with morphisms $f_i : F(i) \to X$, characterized by the following properties:

- 1. If $g_{i,j}: F(i) \to F(j)$ is a morphism, then $f_i = f_j \circ F(g_{i,j})$.
- 2. Any Y with this property factors through X; i.e. there exists an unique $\varphi: Y \to X$ such that $f'_i = \varphi \circ f_i$ for all i.



Definition 4.5. Let *I* be a discrete category (only identity morphisms). Then $F : I \to C$ is determined by $(A_i)_{i \in I}$. Then the **coproduct** is $\coprod_{i \in I} X_i = \operatorname{colim} F$.



Example 4.5. In the category of sets, the coproduct is the disjoint union.

Example 4.6. In the category of groups, $G_1 \amalg G_2$ is call the **free product** of G_1, G_2 . This is usually denoted by $G_1 * G_2$.

Example 4.7. In the category of *R*-modules,

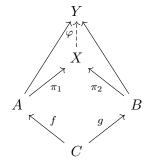
$$\prod_{i \in I} M_i = \bigoplus_{i \in I} M_i = \left\{ \sum_{i=1}^n r_i m_i : r_i \in R, m_i \in M_i \right\}.$$

If I is infinite, this is not the same as

$$\prod_{i\in I} M_i = \{(r_i m_i)_{i\in I} : r_i \in R, m_i \in M_i\}.$$

Example 4.8. In the category of commutative rings, $R \amalg A = R \otimes_{\mathbb{Z}} S$.

Definition 4.6. The push-out $X = A \amalg_C B$ is a colimit of A and B with morphisms $f: C \to A$ and $g: C \to B$.



Example 4.9. In Set, $Y \amalg_C Z = \{x \in Y \amalg Z : f(x) = g(x)\}.$

Example 4.10. In the category of groups, $G_1 \amalg_H G_2$ is called the amalgamated free product and is denoted by $G_1 *_H G_2$.

Example 4.11. In the category of commutative rings, $S_1 \amalg_R S_2 = S_1 \otimes_R S_2$.

Definition 4.7. If $\lim F$ exists, we cay C admits the limit of F. If C admits all (small) limits, we cay C is complete. If C admits all (small) colimits, C is complete.

Example 4.12. The category of sets is both complete and cocomplete.

5 Equivalences, Cayley's Theorem, and More Limits

5.1 Equivalence of categories

Definition 5.1. An equivalence of categories $F : \mathcal{C} \to \mathcal{D}$ with a quasi-inverse $G : \mathcal{D} \to \mathcal{C}$ is a pair of functors such that there exist natural isomorphisms $\eta : F \circ G \to \mathrm{id}_{\mathcal{D}}$ and $\eta' : G \circ F \to \mathrm{id}_{\mathcal{C}}$.

Definition 5.2. A natural isomorphism η is a natural transformation such that η_A is an isomorphism for each A.

Example 5.1. Let \mathcal{C} be the category with $\operatorname{Obj}(\mathcal{C}) = \{A\}$ and $\operatorname{Hom}_{\mathcal{C}}(A, A) = \operatorname{id}_A$, and let \mathcal{C} be the category with objects B, C and morphisms $f : B \to C, g : C \to B$, id_B , and id_C such that $f \circ g = \operatorname{id}_C$ and $g \circ f = \operatorname{id}_B$. Let $F : \mathcal{C} \to \mathcal{D}$ be F(A) = B with $F(\operatorname{id}_A) = \operatorname{id}_B$, and $\operatorname{let} G : \mathcal{D} \to \mathcal{C}$ be G(B) = G(C) = A and $G(h) = \operatorname{id}_A$ for all h. Then $G \circ F(A) = A$, $G \circ F(\operatorname{id}_A) = \operatorname{id}_A$, and you can check that $\eta : G \circ F \to \operatorname{id}_C$ given by $\eta_A = \operatorname{id}_A$ is a natural isomorphism.

5.2 Cayley's theorem

Let \mathcal{C} be a small category, and let $h^{\mathcal{C}} : \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ be

$$h^{\mathcal{C}}(B) = h^{B} = \operatorname{Hom}_{\mathcal{C}}(\cdot, B)$$

and for $f: B \to C$, $h^{\mathcal{C}}(f): h^B \to h^C$ sends $g \in \operatorname{Hom}_{\mathcal{C}}(A, B) \mapsto f \circ g$.

Lemma 5.1 (Yoneda). $h^{\mathcal{C}}$ is fully faithful.

Definition 5.3. The symmetric group on X, S_X , is the set of bijections from X to X with function composition. We call $S_n = S_{\{1,...,n\}}$.

Theorem 5.1 (Cayley). Every group G is isomorphic to a subgroup of S_G .

Proof. Let \mathbb{G} be the category of the group G, where there is one object, and the group elements of G are morphisms. $h^{\mathbb{G}} : \mathbb{G} \to \operatorname{Fun}(\mathbb{G}^{op}, \operatorname{Set})$ is fully faithful. What is this functor? $h^{\mathbb{G}}(G) = h^G = \operatorname{Hom}(\cdot, G)$, and $h^{\mathbb{G}}(g) : h^G \to h^G$, where

$$h^{\mathbb{G}}(g)_G : \underbrace{h^G(G)}_{=G} \to h^G(G),$$

and

$$\rho = h^{\mathbb{G}}(\cdot)_G : G \to \operatorname{Maps}(G, G).$$

Note that

$$\rho(gh) = h^{\mathbb{G}}(gh)_G = (h^{\mathbb{G}}(g) \circ h^{\mathbb{G}}(h))_G = \rho(g)\rho(h),$$

$$\rho(e) = \mathrm{id}_G,$$

$$\mathrm{id}_G = \rho(e) = \rho(gg^{-1}) = \rho(g)\rho(g^{-1})$$

so $\rho(g) \in S_G$. So $\rho: G \to S_G$ is a homomorphism. It is injective because if $\rho(g) = \rho(h)$, then $h^{\mathbb{G}}(g)_G = h^{\mathbb{G}}(h)_H$, so $h^{\mathbb{G}}(g) = h^{\mathbb{G}}(h)$. By Yoneda's lemma, g = h because $h^{\mathbb{G}}$ is faithful.

5.3 Completeness

Definition 5.4. A category is **complete** if it admits all limits. A category is **cocomplete** if it admits all colimits.

Proposition 5.1. Set is complete and cocomplete.

Proof. Here is a sketch. Let $F: I \to \text{Set.}$ Then

$$\lim F = \left\{ (a_i)_{i \in I} \in \prod_{i \in I} F(i) : \forall \phi : i \to j, \ F(\phi)(a_i) = a_j \right\}.$$
$$\operatorname{colim} F = \coprod_{i \in I} F(i) \middle/ \sim,$$

where \sim is the equivalence relation generated by the conditions $a_i \sim a_j \iff \exists \phi : i \to j$ such that $F(\phi)(a_i) = a_j$ for every $a_i \in F(i)$ and $a_j \in F(j)$.

Remark 5.1. The same proof works for the category of groups.

5.4 Initial and terminal objects

Definition 5.5. An initial object A in a category C is any object such that for all $B \in C$, there exists a unique morphism $f : A \to B$. A terminal object A in a category C is any object such that for all $B \in C$, there exists a unique morphism $f : B \to A$.

Remark 5.2. If they exist, initial and terminal objects are unique up to unique isomorphism.

Remark 5.3. Let \emptyset be the empty category, and let $F : \emptyset \to \mathcal{C}$. If $\lim F$ exists, it is a terminal object. If colim F exists, it is an initial object.

5.5 Sequential limits and colimits

Definition 5.6. A sequential limit (or inverse limit) $\varprojlim F$ is a limit of the diagram

$$\cdots \longrightarrow A_3 \xrightarrow{f_2} A_2 \xrightarrow{f_1} A_1$$

A sequential colimit (or direct limit) $\varinjlim F$ is a colimit of the diagram

$$A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \longrightarrow \cdots$$

Example 5.2. In CRing, $\mathbb{Z}/p^{n+1}\mathbb{Z}$ surjects onto $\mathbb{Z}/p^n\mathbb{Z}$. Then $\varprojlim_n \mathbb{Z}/p^n\mathbb{Z}$ is called the *p*-adic integers \mathbb{Z}_p , where

$$\mathbb{Z}_p = \left\{ a_i \in \prod_{n=1}^{\infty} \mathbb{Z}/p^n \mathbb{Z} : a_n = a_{n+1} \pmod{p^n} \right\}.$$

6 Inverse Limits, Direct Limits, and Adjoint Functors

6.1 Inverse and direct limits

Example 6.1. Consider the colimit of this diagram in Ab:

$$\mathbb{Z}/p\mathbb{Z} \xrightarrow{\cdot p} \cdots \xrightarrow{\cdot p} \mathbb{Z}/p^n\mathbb{Z} \xrightarrow{\cdot p} \mathbb{Z}/p^{n+1}\mathbb{Z} \xrightarrow{\cdot p} \cdots$$

Then $\lim_{n \to \infty} \mathbb{Z}/p^n \mathbb{Z} \cong \mathbb{Q}_p/\mathbb{Z}_p \subseteq \mathbb{Q}/\mathbb{Z}$, where \mathbb{Q}_p is the free field of \mathbb{Z}_p . We can also show that $\mathbb{Q}_p/\mathbb{Z}_p: \{a \in \mathbb{Q}/\mathbb{Z} : p^n a = 0 \text{ for some } n \ge 0\}.$

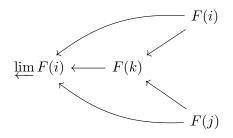
Definition 6.1. A directed set I is a set with a partial ordering such that for all $i, j \in I$, there is a $k \in I$ such that $i \leq k, j \leq k$.

Definition 6.2. A directed category is a category where the objects are elements of a directed set I, and there are morphisms $i \to j$ iff $i \leq j$. A codirected category \mathcal{I} is a category where \mathcal{C}^{op} is directed.

Definition 6.3. Suppose \mathcal{I} is codirected with $Obj(\mathcal{I}) = I$ and $F : \mathcal{I} \to \mathbb{C}$. A limit of F is called the **inverse limit** of the F(i) for all $i \in I$. We write $\lim F = \lim_{i \in I} F(i)$.



If \mathcal{I} is directed with $\operatorname{Obj}(\mathcal{I}) = I$ and $F : \mathcal{I} \to \mathcal{C}$. A colimit of F is called the **direct limit** of the F(i) for all $i \in I$. We write colim $F = \lim_{i \in I} \operatorname{colim} F$.



Definition 6.4. A small category \mathcal{I} is **filtered** if

1. for all $i, j \in I$, there exists $k \in I$ such that there exist morphisms $i \to k, j \to k$,

2. for all $\kappa, \kappa' : i \to j$ in I there exists a morphism $\lambda : j \to k$ such that $\lambda \circ \kappa = \lambda \circ \kappa'$

A category it **cofiltered** if the opposite category is filtered.

Cofiltered limits and diltered limits generalize inverse and direct limits, respectively.

Example 6.2. Let *I* be cofiltered with an initial object *c*. Then if $F : I \to C$, $\lim F = F(e)$.

6.2 Adjoint functors

Definition 6.5. A functor $F : \mathcal{C} \to \mathcal{D}$ is **left adjoint** to a functor $G : \mathcal{D} \to \mathcal{C}$ if for each $C \in \mathcal{C}, D \in \mathcal{D}$, there exist bijections $\eta_{C,D} : \operatorname{Hom}_{\mathcal{D}}(F(C), D) \to \operatorname{Hom}_{\mathcal{C}}(C, G(D))$ such that η is a natural transformation between functors $\mathcal{C}^{op} \times \mathcal{D} \to \operatorname{Sets}$. That is,

G is **right adjoint** to F if F is left adjoint to G.

Remark 6.1. If $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ are quasi-inverses and $\eta : \mathrm{id}_{\mathcal{C}} \to G \circ F$ is a natural isomorphism, then we can define $\phi_{C,D} : \mathrm{Hom}_{\mathcal{D}}(F(C), D) \to \mathrm{Hom}_{\mathcal{C}}(C, G(D))$ given by $h \mapsto G(h) \circ \eta_C$. Check that $\phi_{C,D}$ is a bijection. So F is left-adjoint to G. Similarly, G is left-adjoint to F.

Proposition 6.1. Suppose S is a set, and consider h_S : Set \rightarrow Set given by $h_S(T) = Maps(S,T)$ and $h_S(f:T \rightarrow T') = g \mapsto f \circ g$. Then h_S is right adjoint to t_S : Set \rightarrow Set given by $t_S(T) = T \times S$ and $t_S(f) = (f, id_S) : T \times S \rightarrow T' \times S$.

Proof. We need to find a bijection $\tau_{T,U}$: Maps $(T \times S, U) \to Maps(T, Maps(S, U))$. We can send $f \mapsto (t \mapsto (s \mapsto f(s,t)))$. To show that this is a bijection, we can go backward by sending $\varphi \mapsto ((t,s) \mapsto \varphi(t)(s))$. Check that these maps are inverses of each other and that this is a natural transformation.

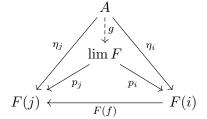
Proposition 6.2. Suppose all limits $F : I \to C$ exist. Then the functor $\lim : \operatorname{Fun}(I, C) \to C$ given by $F \mapsto \lim F$ and $(\eta : F \to F') \mapsto (\lim F \mapsto \lim F')$ has a left adjoint $\Delta : C \to \operatorname{Fun}(I, C)$ such that $\Delta(A) = c_A$ is the constant functor $I \to C$ with value A.

Proof. We want a bijection η : Hom_{Fun(*I*,*C*)}(c_A, F) \rightarrow Hom_{*C*}($A, \lim F$). Let $\eta : c_A \rightarrow F$ be $\eta_i : c_A(i) \rightarrow F(i)$ such that

$$=A$$

$$\begin{array}{ccc} A & \xrightarrow{\eta_i} & F(i) & & A & \xrightarrow{\eta_i} & F(i) \\ \text{id}_A = c_A(f) & & \downarrow F(f) & & & & & \downarrow F(f) \\ A & \xrightarrow{\eta_j} & F(j) & & & F(j) \end{array}$$

for all $f: i \to j$. So $\eta_j = F(f) \circ \eta_i$ for all $f: i \to j$. There exists a unique morphism $g: A \to \lim F$ such that



Send η to g. Conversely if we have $g : A \to \lim F$, $\eta_i = p_i \circ g$ is a morphism from $A \to F(i)$. So we get $\eta \in \operatorname{Hom}_{\operatorname{Fun}(I,\mathcal{C})}(c_A, F)$.

Definition 6.6. A contravariant functor $F : \mathcal{C} \to \text{Set}$ is **representable** if there exists an object $B \in \mathcal{C}$ and a natural isomorphism $h^B \to F$, where $h^B = \text{Hom}_{\mathcal{C}}(\cdot, B)$. We say that B represents F.

Example 6.3. The functor $P : \text{Set} \to \text{Set}$ given by $S \mapsto \mathcal{P}(S)$ and $(f : S \to T) \mapsto (V \mapsto f^{-1}(V))$ is representable by $\{0, 1\}$.

7 Representable Functors and Free Groups

7.1 Representable functors

Definition 7.1. A contravariant functor $F : \mathcal{C} \to \text{Set}$ is **representable** if there is a natural isomorphism $h^B \to F$ for some $B \in \mathcal{C}$, where $h^B = \text{Hom}_{\mathcal{C}}(\cdot, B)$.

Example 7.1. Let $P : \text{Set} \to \text{Set}$ be the morphism such that $P(S) = \mathcal{P}(S)$, the power set of S, and $P(f : S \to T)(V) = f^{-1}(V)$ for $V \subseteq T$. P is representable by $\{0,1\}$; $P(S) \xrightarrow{\sim} \text{Maps}(S, \{0,1\})$, which sends $U \mapsto \mathbb{1}_U$, the indicator function of U.

$$P(T) \xrightarrow{\sim} \operatorname{Maps}(T, \{0, 1\})$$
$$\downarrow^{P(f)} \qquad \qquad \downarrow^{h^{\{0,1\}}(f)}$$
$$P(S) \xrightarrow{\sim} \operatorname{Maps}(S, \{0, 1\})$$

Lemma 7.1. A representable functor is represented by a unique object up to (unique) isomorphism. That is, if B, C represent $F : C \to Set$, then there exists a unique isomorphism $f : B \to C$ such that

$$\operatorname{Hom}_{\mathcal{C}}(A, B) \xrightarrow{\sim} F(A)$$
$$\downarrow^{h_A(f)} \qquad \qquad \downarrow^{\operatorname{id}_A}$$
$$\operatorname{Hom}_{\mathcal{C}}(A, C) \xrightarrow{\sim} F(A)$$

Proof. There exist natural isomorphisms $\xi : h^B \to F$, $\xi' : h^C \to F$. Then $(\xi')^{-1} \circ \xi$ is a natural isomorphimsm $h^B \to h^C$. Yoneda's lemma gives a unique $f : B \to C$ such that $h^{\mathcal{C}}(f) = (\xi')^{-1} \circ \xi$ because $h^{\mathcal{C}}(f)_A = h_A(f)$.

Remark 7.1. A covariant functor $F : \mathcal{C} \to \text{Set}$ is representable if there exists a natural isomorphism $F \to h_A$ for some $A \in \mathcal{C}$.

Example 7.2. Let Φ : Grp \rightarrow Set be the forgetful functor. To represent Φ , we want a bijection $\Phi(G) = G \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Grp}}(\mathbb{Z}, G)$; send $g \mapsto (n \mapsto g^n)$. This image homomorphism is completely determined by whatever 1 gets sent to, which is g. So this is a bijection. So Φ is represented by \mathbb{Z} .

7.2 Free groups

Definition 7.2. A group F is free on a subset $X \subseteq F$ if for any function $f : X \to G$, where G is a group, there exists a unique homomorphism $\phi_f : F \to G$ such that $\phi_f(x) = f(x)$ for all $x \in X$.

Example 7.3. Let Φ : Grp \rightarrow Set be the forgetful functor. If $f \in \operatorname{Hom}_{\operatorname{Set}}(X, \Phi(G)) = \operatorname{Maps}(X, G)$, we want $\phi_f \in \operatorname{Hom}_{\operatorname{Grp}}(F_X, G)$, where F_X is the free group on X. We want a bijection $\operatorname{Hom}_{\operatorname{Grp}}(F_X, G) \xrightarrow{\sim} \operatorname{Hom}_{\operatorname{Set}}(X, \Phi(G))$. Send $\phi \mapsto \phi|_X$. If $f : G \to H$ is a homomorphism,

$$\operatorname{Hom}_{\operatorname{Grp}}(F_X, C) \xleftarrow{} \operatorname{Maps}(X, G)$$
$$\downarrow^{\phi_f \mapsto \varphi \circ \phi_f} \qquad \qquad \downarrow^{f \mapsto \phi \circ f}$$
$$\operatorname{Hom}_{\operatorname{Grp}}(F_X, H) \xleftarrow{} \operatorname{Maps}(X, H)$$

If F_X exists for all X, then $F : \text{Set} \to \text{Grp}$ with $F(X) = F_X$ and $F(\varphi)$ the unque morphism is left adjoint to Φ . Why is this morphism unique? $\varphi : X \to Y$ induces a map $h : X \to F_Y$. There exists a unique map $\phi_h : F_X \to F_Y$ by the universal property.

Definition 7.3. Let $\Phi : \mathcal{C} \to \text{Set}$ be a faithful functor and X a set. A **free object** F_X on X in \mathcal{C} is a function $\iota : X \to \Phi(F_X)$ such that $\text{Hom}_{\mathcal{C}}(F_X, B) \xrightarrow{\sim} \text{Maps}(X, \Phi(B))$ via $\alpha \mapsto \Phi(\alpha) \circ \iota$ is a bijection for all $B \in \mathcal{C}$.

Example 7.4. The forgetful functor Φ : Top \rightarrow Set takes a topological space and returns the underlying set, forgetting the topology. Let's find a left adjoint. If X is a set, we can map it to a topological space $F_X = X$ with the discrete topology. Then $\operatorname{Hom}_{\operatorname{Top}}(X, B) = \operatorname{Maps}(X, B)$.

Example 7.5. Let Φ : Ab \rightarrow Set be the forgetful functor. Let ι : $X \rightarrow \bigoplus_{x \in X} \mathbb{Z}$ send $x \mapsto 1 \cdot x$. We want a bijection $X \mapsto \bigoplus_{x \in X} \mathbb{Z}$. Hom_{Ab} $(\bigoplus_{x \in X} \mathbb{Z}, B) \rightarrow \text{Maps}(X, B)$. For the backwards direction, send $f \mapsto \phi_f(\sum_x a_x x) = \sum_x a_x f(x)$. In the forward direction, we have $\phi \mapsto (x \mapsto \phi(1 \cdot x))$. $\bigoplus_{x \in X} \mathbb{Z}$ is called the **free abelian group** on X.

How do the free group X and the free abelian group $\bigoplus_{x \in X} \mathbb{Z}$ compare? There is a surjective homomorphism $F_X \to \bigoplus_{x \in X} \mathbb{Z}$ sending $x \mapsto 1 \cdot x$. This is because we have the bijection $\operatorname{Hom}_{\operatorname{Grp}}(F_X, \bigoplus_{x \in X} \mathbb{Z}) \xrightarrow{\sim} \operatorname{Maps}(X, \bigoplus_{x \in X} \mathbb{Z})$. We can't go the other way because a free group is not necessarily abelian.

8 Free Groups, Normal Subgroups, and Quotient Groups

8.1 Free groups

Definition 8.1. A word on a set X is a symbol $x_1^{n_1} \cdots x_k^{n_k}$ where $k \ge 0$ (k = 0 gives e), $x_i \in X$, and $n_i \in \mathbb{Z}$ for $1 \le i \le k$. Write x^1 as x.

Definition 8.2. The product of two words is their concatenation.

$$(x_1^{n_1}\cdots x_k^{n_k})\cdot (y_1^{n_1}\cdots y_k^{n_k}):=x_1^{n_1}\cdots x_k^{n_k}y_1^{n_1}\cdots y_k^{n_k}.$$

Definition 8.3. Two words are equivalent if they are equivalent under the equivalence relation \sim generated by

- 1. $ww' \sim wx^0 w'$
- 2. $wx^{m+n}w' \sim wx^m x^n w'$

for all words w, w' and $x \in X$.

Definition 8.4. A reduced word is a word such that $x_i^j \neq x_{i+1}^\ell$ for any $k, \ell \in \mathbb{Z}$ and for all $1 \leq i \leq k-1$, and $n_i \neq 0$ for all x_i .

This is a word which is the shortest in its equivalence class.

Proposition 8.1. Every word is equivalent to a unique reduced word.

Example 8.1. Let's reduce the word $x^3y^2z^{-1}zy^{-2}x^2$.

$$x^{3}y^{2}z^{-1}zy^{-2}x^{2} \sim x^{3}y^{2}z^{0}y^{-2}x^{2} \sim x^{3}y^{2}y^{-2}x^{2} \sim x^{3}y^{0}x^{2} \sim x^{3}x^{2} \sim x^{5}.$$

Let F_X be the group of equivalence classes of words on X. You can check yourself that if $v \sim v'$ and $w \sim w'$, then $vw \sim v'w'$, so products on F_X are well-defined. This is a group under the product of words, where e is the identity element and the inverse is $(x_1^{n_1} \cdots x_k^{n_k})^{-1} = x_k^{-n_k} \cdots x_1^{-n_1}$.

Definition 8.5. F_X is called the **free group on** X. If $X = \{1, ..., n\}$, $F_n := F_X$ is called the **free group of rank** n.

Example 8.2. $F_{\{x\}} = \langle x \rangle = \{x^n : n \in \mathbb{Z}\} \cong \mathbb{Z}.$

Example 8.3. $F_{\{x,y\}} = \{x^{n_1}y^{m_1}\cdots x^{n_k}y^{m_k} : k \ge 0, n_i \ne 0 \ \forall i \ge 2, m_i \ne 0 \ \forall i \le k-1\}.$

Proposition 8.2. F_X is a free group on X (in the categorical sense). It is the coproduct of the functor $c_{\mathbb{Z}} : X \to \text{Gp}$ which sends $i \mapsto \mathbb{Z}$ and $f \mapsto id_{\mathbb{Z}}$.

Proof. We want $\operatorname{Hom}_{\operatorname{Gp}}(F(X), G) \cong \operatorname{Maps}(X, G)$. We send $\phi \mapsto \phi|_X$. Our map $\iota : X \to F_X$ is the inclusion map. To go backwards, mapping $f \mapsto \phi$ for $f : X \to G$, we define $\phi_f(x_1^{n_1} \cdots x_k^{n_k}) = f(x_1)^{n_1} \cdots f(x_k)^{n_k}$. If we can show that ϕ_f is well defined, we will get the homomorphism we want. Observe that

$$\phi_f(wx^0w') = \phi_f(w)f(x)^0\phi_f(w') = \phi_f(w)\phi_f(w') = \phi_f(ww').$$

Check yourself that $\phi_f(wx^{m+n}w') = \phi_f(wx^nx^mw')$. Uniqueness is left as an exercise.

The coproduct property is very similar to a homework problem for this week, so we leave it as an exercise, as well. $\hfill \Box$

Definition 8.6. The free product $*_{i \in I}G_i = \{$ words in the groups $G_i\}/\sim$ is the coproduct in the category of groups.

8.2 Normal subgroups and quotient groups

Definition 8.7. A subgroup N of a group G is **normal**, written $N \leq G$ if $gng^{-1} \in N$ for all $g \in G$ and $n \in N$.

Definition 8.8. Let $H \leq G$ and $g \in G$. Then $gH = \{gh : h \in H\}$ is the **left** *H*-coset of g, and $Hg = \{hg : h \in H\}$ is the **right** *H*-coset of g.

Remark 8.1.

$$N \leq G \iff gNg^{-1} \leq N \; \forall g \in G$$
$$\iff gNg^{-1} = N \; \forall g \in G$$
$$\iff gN = Ng \; \forall g \in G.$$

Remark 8.2. Let $G/H = \{gH : g \in G\}$ and $H \setminus G = \{Hg : g \in G\}$. These are in bijection via $gH \mapsto (gH)^{-1} = Hg$.

Proposition 8.3. $N \trianglelefteq G \iff gN \cdot g'N = gg'N$ gives a well-defined group structure on G/N.

Definition 8.9. We call $G/N = \{gN : g \in G\}$ the quotient group.

Definition 8.10. The index of H in G is the number of left (or right) cosets of H in G.

Example 8.4. $N\mathbb{Z} \leq \mathbb{Z}$. Since \mathbb{Z} is abelian, $N\mathbb{Z} \leq \mathbb{Z}$. Then the quotient group $\mathbb{Z}/N\mathbb{Z} = \{a + N\mathbb{Z} : 0 \leq a \leq N - 1\}.$

Example 8.5. D_n is the dihedral group of symmetries of a regular *n*-gon. $|D_n| = 2n$, and the set of rotations is a normal subgroup.²

²Since $|D_n| = 2n$, some people call this group D_{2n} .

9 Equalizers, Kernels, and Ideals

9.1 Equalizers and coequalizers

Definition 9.1. Let $f, g : A \to B$ be morphisms in \mathcal{C} . The **equalizer** is the limit of the diagram

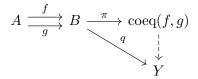
$$A \xrightarrow{f} B$$

It satisfies the following diagram:

A **coequalizer** is the colimit of the diagram

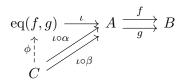
$$A \xrightarrow[g]{f} B$$

It satisfies the following diagram:



Lemma 9.1. $\iota : eq(f,g) \to A$ is a monomorphism, and $\pi : B \to coeq(f,g)$ is an epimorphism.

Proof. Let $\alpha, \beta : C \to eq(f,g)$ be such that $\iota \circ \alpha = \iota \circ \beta$. Then there is a unique morphism $\phi : C \to eq(f,g)$ making the following diagram commute:



But α and β satisfy the property of ϕ , so $\alpha = \phi = \beta$. The property for coequalizers follows from reversing the arrows.

Theorem 9.1. Every category with products and equalizers is complete.

Proof. Let $F: I \to \mathcal{C}$ be a functor. Then

$$\prod_{i \in I} F(i) \xrightarrow{f}_{g} \prod_{\phi: i \mapsto \phi(i)} F(\phi(i))$$

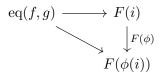
where f is

$$\prod_{k \in I} F(k) \xrightarrow{\pi_i} F(i) \xrightarrow{F(\phi)} F(\phi(i))$$

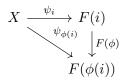
and g is

$$\prod_{k \in I} F(k) \xrightarrow{\pi_{\pi(i)}} F(\phi(i))$$

We claim that $\operatorname{eq}(f,g)\to \prod_{i\in I}F(i)\to F(i)$ is the limit. The



commute for all ϕ . So the equalizer has the property of the limit. To show the universal property, suppose we have the following diagram for some X.



This is the same as

$$\begin{array}{c} X & \longrightarrow \prod_{i \in I} F(i) \xrightarrow{f} \prod_{\phi: i \mapsto \phi(i)} F(\phi(i)) \\ \downarrow & & \\ eq(f,g) \end{array}$$

by the universal property of the equalizer. So eq(f,g) satisfies the universal property of $\lim F$.

Example 9.1. In Set, Gp, Ring, Rmod, and Top, the equalizer of $f, g : A \to B$ is $eq(f,g) = \{x \in A : f(x) = g(x)\}$. These are all complete categories. The are also complete, as they have coproducts and coequalizers.

9.2 Kernels and ideals

Definition 9.2. A zero object is an object which is both initial and terminal.

Let \mathcal{C} have a zero object 0. There exists a unique morphism $0 : A \to B$ which is the composition of the unique morphism from $A \to 0$ and $0 \to B$.

Definition 9.3. For $f : A \to B$, the **kernel** ker(f) = eq(f, 0) and coker(f) = coeq(f, 0), where 0 is the unique zero morphism.

Example 9.2. In Gp, $\ker(f: G \to G') = \{g \in G : f(g) = e\}$. This is the same in Rmod.

Example 9.3. In Ring, we can makes sense of this is we work in a larger category, Rng, of pseudorings (rings without identity). If $f : R \to S$, then $\ker(f) = \{x \in R : f(x) = 0\}$. In fact, ker f is a two-sided ideal.

In all of these cases, ker f = 0 iff f is a monomorphism iff f is 1 to 1. To show that ker(f) = 0 implies that f is a monomorphism, we have (in Gp)

$$f(g) = f(h) \implies f(gh^{-1}) = e \implies gh^{-1} = e \implies g = h,$$

but this requires internal knowledge of the structure of the category.

Proposition 9.1. 1. If $f: G \to G'$ is a homomorphism, $\ker(f) \trianglelefteq G$.

2. If $N \leq G$, then $N = \ker(\pi)$, where $f: G \to G/N$ sends $g \mapsto gN$.

Proof. To prove the first part, note that $f(gng^{-1}) = f(g)f(n)f(g)^{-1} = e$, so $gng^{-1} \in ker(f)$. The second follows from the definitions.

Theorem 9.2. Let $f: G \to G'$ be a homomorphism. Then $\overline{f}: G/\ker(f) \to \operatorname{im}(f)$ given by $\overline{f}(g \ker(f)) = f(g)$ is an isomorphism.

Definition 9.4. A left ideal I of a ring R is a subgroup such that $ri \in I$ for all $r \in R$ and $i \in I$. A **right ideal** I of a ring R is a subgroup such that $is \in I$ for all $s \in R$ and $i \in I$. A **(two-sided) ideal** I is a right and left ideal.

If we have a left ideal I, left multiplication $R \times I \to R$ makes I a left R-module. So a left ideal of R is exactly a left R-submodule of R.

Definition 9.5. An (R, S)-bimodule M is a left R-module that is also a right S-module such that (rm)s = r(ms) for all $r \in R$, $s \in S$, and $m \in M$.

A (two-sided) ideal is an (R, R)-subbimodule of R.

If $I \subseteq R$ is a two-sided idea, then $R/I = \{a + I : a \in R\}$. We have addition (a + I) + (b + I) = (a + b) + I and multiplication (a + I)(b + I) = ab + I. Why is multiplication well-defined? For $a, b \in R$ and $i, j \in I$,

$$(a+i)(b+j) = ab + \underbrace{aj}_{\in I} + \underbrace{ib}_{\in I} + \underbrace{ij}_{\in I} \in ab + I.$$

Definition 9.6. R/I is called a **quotient ring**.

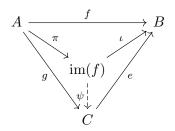
Observe that ker(f) with $f: R \to S$ is an ideal. If $a \in \text{ker}(f)$, $r, s \in R$, then f(ras) = f(r)f(a)f(s) = 0. So we have the $\pi: R \to R/I$ with $\pi(r) = r + I$ and ker(π) = I. So $R/\text{ker}(f) \cong \text{im}(f)$.

This also works with with left, right, and bimodules. In fact, it works even better! All left *R*-modules are kernels, so you don't need any conditions like normality.

What about cokernels? In Gp, we have a problem: if $f : G \to G'$, $\operatorname{im}(f)$ may not be normal in G'. We take $\operatorname{coker}(f) = G/\overline{\operatorname{im}(f)}$, where $\overline{\operatorname{im}(f)}$ denotes the **normal closure** of $\operatorname{im}(f)$, the smallest normal subgroup containing $\operatorname{im}(f)$.

We have been using the term image in the sense of groups. Here is a categorical point of view.

Definition 9.7. The **image** $\operatorname{im}(f)$ of $f : A \to B$ is an object and a monomorphism $\iota : \operatorname{im}(f) \to B$ such that there exists $\pi : A \to \operatorname{im}(f)$ with $\pi \circ \iota$ and such that if $e : C \to B$ is a monomorphism and $g : A \to C$ is such that $e \circ g = f$, then there exists a unique morphism $\psi : \operatorname{im}(f) \to C$ such that $g \circ \psi = \iota$.

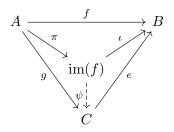


Note that $e \circ \psi \circ \pi = e \circ g \implies \psi \circ \pi = g$, since e is a monomorphism.

10 Images, Coimages, and Generating Sets

10.1 Images

Definition 10.1. The **image** $\operatorname{im}(f)$ of $f : A \to B$ is an object and a monomorphism $\iota : \operatorname{im}(f) \to B$ such that there exists $\pi : A \to \operatorname{im}(f)$ with $\pi \circ \iota$ and such that if $e : C \to B$ is a monomorphism and $g : A \to C$ is such that $e \circ g = f$, then there exists a unique morphism $\psi : \operatorname{im}(f) \to C$ such that $g \circ \psi = \iota$.



Example 10.1. In Set, f(A) = im(f). Then $b \in F(A) \implies b = f(a)$ for some $a \in A$. Then $g(a) \in C$ is the unique element with e(g(a)) = (a) because e is a monomorphism. So $\psi(f(a)) = g(a)$.

Proposition 10.1. If C has equalizers, then $\pi : A \to im(f)$ is an epimorphism.

Proof. Suppose

$$A \xrightarrow{\iota} \operatorname{im}(f) \xrightarrow{\alpha}_{\beta} D$$

commutes. Then $\alpha \circ \pi = \beta \circ \pi$,

$$A \xrightarrow{\pi} eq(\alpha, \beta) \xrightarrow{c} im(f)$$

$$f \qquad \qquad \downarrow^{\iota}$$

$$B$$

Then there is a unique $d : im(f) \to eq(\alpha, \beta)$, and $c \circ d = id$ and $d \circ c = id$ by uniqueness. So $(im(f), id_{im(f)})$ equalizes

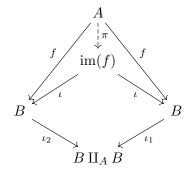
$$\operatorname{im}(f) \xrightarrow[\beta]{\alpha} D$$

so $\alpha = \beta$.

Suppose that in C, every morphism factors through an equalizer and the category has finite limits and colimits. Then im(f) can be defined as the equalizer of the following diagram:

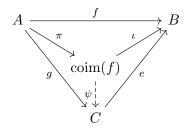
$$B \xrightarrow{\iota_1} B \amalg_A B$$

We get the following diagram.

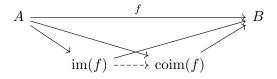


10.2 Coimages

Definition 10.2. The **coimage** $\operatorname{im}(f)$ of $f : A \to B$ is an object and a monomorphism $\pi : A \to \operatorname{coim}(f)$ such that there exists $\iota : \operatorname{coim}(f) \to B$ such that $\iota \circ \pi$ and such that if $g : A \to C$ is an epinmorphism and $e : C \to B$ is such that $e \circ g = f$, then there exists a unique morphism $\theta : C \to \operatorname{coim}(f)$ such that $\theta \circ g = \pi$.



So $\iota \circ \theta \circ g = \iota \circ \pi = f = e \circ g$. Since g is an epimorphism, $i \circ \theta = e$. How are the image and coimage related?



Definition 10.3. A morphism $f : A \to B$ is strict if $im(f) \to coim(f)$ is an isomorphism.

In Grp, Ring, Rmod, Set, and Top, im(f) is the set theoretic image. The coimages are quotient objects (of A).

Example 10.2. In Set, $\operatorname{coim}(f) = A/\sim$, where $a \sim a$; if $f(a) \sim f(a')$. All the morphisms are strict.

Example 10.3. In Gp, $\operatorname{coim}(f : C \to C') = G/\ker(f)$. $\operatorname{im}(f) \subseteq f(G) \leq G'$. So the image and coimage are isomorphic, which is the first isomorphism theorem.

Example 10.4. In Ring, let $\ker(f)$ be the category theoretic kernel. Then $\operatorname{coim}(f) = R/\ker(f) \xrightarrow{\sim} \operatorname{im}(f)$ by the first isomorphism theorem.

Example 10.5. In the category of left *R*-modules, morphisms are also strict.

10.3 Generating sets

Definition 10.4. Let $\Phi : \mathcal{C} \to \text{Set}$ be a faithful functor, and let F be a left adjoint to Φ . Let $F_X = F(X)$ be the free object on X. If $X \xrightarrow{f} \Phi(A)$ for $A \in \mathcal{C}$, we get $\phi : F_X \to A$. Suppose $\operatorname{im}(\phi)$ exists. Then $\operatorname{im}(\phi)$ is called the **subobject of** A generated by X.

Example 10.6. In Gp, let $X \subseteq G$. Then $\langle X \rangle$ is the subgroup of G generated by X. This is $\operatorname{im}(\phi: T_X \to G)$, where $\phi(x_1^{n_1} \cdots x_r^{n_r}) = x_1^{n_1} \cdots x_r^{n_r}$. So this is $\{x_1^{n_1} \cdots x_r^{n_r} : x_1 \in X, n_i \in \mathbb{Z}, 1 \leq i \leq r, r \geq 0\}$. We claim that $\langle X \rangle$ is the smallest subgroup of G containing X, or equivalently, the intersection of all subgroups of G containing X. Indeed, this is a subgroup of G containing X, and any subgroup of G containing X must contain these words, since it must be closed under products.

Example 10.7. In Rmod, if $X \subseteq A$, $R \cdot X = \{\sum_{i=1}^{n} r_i x_i : r_i \in R, x_i \in X, 1 \le i \le n, n \ge 0\}$. So $F_X = \bigoplus_{x \in X} R_x \xrightarrow{\phi} A$, where $\phi(r \cdot x) = rx \in A$.

Example 10.8. In the category of (R, S)-bimodules, $RXS = \{\sum_{i=1}^{n} r_i x_i s_i : r_i \in R, s_i \in S, x_i \in X, 1 \le i \le n, n \ge 0\}$. If we have the set of formal sums $RxS = \{\sum_{i=1}^{n} r_i x s_i : r_i \in R, s_i \in S, 1 \le i \le n, n \ge 0\}$ with (r + r')xs = rxs + r'xs and rx(s + s') = rxs + rxs', then the free object is $\bigoplus_{x \in X} RxS$.

Ideals uses (R, R)-subbimodules of R generated by $X \subseteq R$.

Definition 10.5. The ideal generated by X is $(X) = \{\sum_{i=1}^{n} r_i x_i r'_i : r_i, r'_i \in R, x_i \in X\}$. If $X = \{x_1, \ldots, x_n\}$, then we write (x_1, \ldots, x_n) .

Remark 10.1. Even if $X = \{x\}$, we still need to take sums to get (x).

11 Group Presentations and Automorphisms

11.1 Cyclic groups and principal ideals

Definition 11.1. A cyclic group is a group $G = \langle x \rangle$ that can be generated by one element.

Definition 11.2. A principal ideal is an ideal $(x) \subseteq R$ that can be generated by one element.

Example 11.1. In $\mathbb{Z}[x]$, (2, x) is not principal. The elements are 2f + xg for $f, g \in \mathbb{Z}[x]$. If $h \mid 2$ and $h \mid x$, then $h = \pm 1$, but $\pm 1 \notin (2, x)$.

Example 11.2. D_{2n} is not cyclic because it is not abelian.

11.2 Presentations of groups

Suppose $X \subseteq G$ is a generating set of G. We get a surjection $\phi : F_X \to G$ given by $\phi(x) = x$ for all $x \in X$. Let $N = \ker(\phi)$, and let $R \subseteq N$ be such that $\overline{\langle R \rangle}$, the smallest normal subgroup of N containing R, equals N.

$$\overline{\langle R \rangle} = \{ n_1 r_1^{\pm 1} n_1^{-1} n_2 r_2^{\pm 1} n_1^{-1} \cdots n_k r_k^{\pm 1} n_k^{-1} : n_i \in N, r_i \in R, 1 \le i \le k, k \ge 0 \}$$

Definition 11.3. $\langle X|R \rangle$ is called a **presentation** of *G*.

Example 11.3. In D_n , we have the reflection s across the horizontal axis, and the rotation r by $2\pi/n$ degrees. The elements of R are relations on the generators X. So $D_n = \langle r, s \mid r^n, s^2, rsrs \rangle$ is a presentation of D_n . The elements on the right side of the presentation are things that are equal to the identity of G. So rsrs = e, and we get $rs = sr^{-1}$, which tells us how to commute r and s.

Example 11.4. $\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$. Here, a = (1,0) and b = (0,1). The relation $aba^{-1}b^{-1} = e$ gives ab = ba; i.e. a and b commute. We may also write $\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle$.

Definition 11.4. The commutator of $x, y \in G$ is $[x, y] = xyx^{-1}y^{-1}$.

Example 11.5. Let

$$H = \left\{ \begin{bmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} : a, b, c \in \mathbb{Z} \right\} \le \operatorname{GL}_3(\mathbb{Z})$$

be the invertible matrices with \mathbb{Z} -entries in $M_3(\mathbb{Z})$. This is called the **Heisenberg group**. If

$$x = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$

then

$$xy = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \qquad x^{-1}y^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

So the commutator is

$$[x,y] = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

If we call this z, then x, y, z generate H. This matrix z commutes with everything in the group (you only need to check that zx = xz and zy = yz. So $z \in Z(H)$, the center of G. In fact, $Z(H) = \langle z \rangle$. We get that $H = \langle x, y \mid [x, [x, y]], [y, [x, y]] \rangle$.

Definition 11.5. The center Z(G) is the set of elements in G that commute with everything; i.e. zg = gz for all $g \in G$. We can also write $H = \langle x, y, z : [x, y] = z, [x, z], [y, z] \rangle$.

The center is a subgroup of G, and it is in fact normal.

Example 11.6. The quaternion group of order 8 is

$$Q_8 = \langle i, j, k \mid ij = k, i^2 = j^2 = k^2, i^4 = e \rangle.$$

This can also be written as $\{\pm 1, \pm i, \pm j, \pm k\}$, where $-1 = i^2 = j^2 = k^2$.

Definition 11.6. We say a group is **finitely generated** if it has a finite set of generators. We say a group is **finitely presented** if it has a finite set of generators and has a finite set of relations on those generators.

Example 11.7. $F_2 = \langle a, b \rangle$ is the group generated by 2 elements. The commutator subgroup

$$[F_2, F_2] = \langle [a, b] \mid a, b \in F_2 \rangle \le F_2,$$

is not finitely generated.

11.3 Automorphism groups

Definition 11.7. The **automorphism group** Aut(G) of G is the set of isomorphisms $\phi: G \to G$, with composition as the group operation.

Definition 11.8. The inner automorphism group of G is $\text{Inn}(G) = \{\gamma_g : g \in G\} \subseteq \text{Aut}(G)$, where $\gamma_g(h) = ghg^{-1}$.

Observe that $\operatorname{Inn}(G) \trianglelefteq \operatorname{Aut}(G)$.

$$\varphi\gamma_g\varphi^{-1}(x) = \varphi(g\varphi^{-1}(x)g^{-1}) = \varphi(g)\varphi(\varphi^{-1}(x))\varphi(g) = \gamma_{\varphi(g)}(x).$$

Definition 11.9. The outer automorphism group of G is Out(G) = Aut(G) / Inn(G).

If G is abelian, then $Out(G) \cong Aut(G)$.

Example 11.8. $\operatorname{Out}(\mathbb{Z}^2) = \operatorname{Aut}(\mathbb{Z}^2) = \operatorname{GL}_2(\mathbb{Z}).$

12 Automorphisms, Lagrange's Theorem, Isomorphism Theorems, and Semidirect Products

12.1 Automorphisms and Lagrange's theorem

Last time, we had $\gamma : G \to \text{Inn}(G)$ given by $g \mapsto \gamma_g$, where $\gamma_g(x) = gxg^{-1}$. Then $\ker(\gamma) = Z(G)$, so $G/Z(G) \cong \text{Inn}(G)$.

Theorem 12.1 (Lagrange). Let $H \leq G$, where H and G are finite, then |G| = [G : H]|H|. Also, if $K \leq H \leq G$, then [G : K] = [G : H][H : K].

Proof. $G = \coprod gH$, where the g are a set of coset representatives. Then, since $H \to gH$ given by $h \mapsto gh$ is a bijection, G = (# left cosets)|H| = [G:H]|H|.

Definition 12.1. The order of $g \in G$ is the smallest $n \ge 1$ such that $g^n = e$. The exponent of G is the smallest n such that $g^n = e$ for all $g \in G$.

Example 12.1. Aut $(D_n) \cong \operatorname{Aff}(\mathbb{Z}/n\mathbb{Z}) \leq \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$, where

Aff
$$(\mathbb{Z}/n\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a \in (\mathbb{Z}/n\mathbb{Z})^{\times}, b \in \mathbb{Z}/n\mathbb{Z} \right\}.$$

The map is $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \mapsto \phi_{a,b}$, where $\phi_{a,b}(r) = r^a$ and $\phi_{a,b}(s) = r^b s$. Let's check that this is an isomorphism.

First, we check that we can use the presentation $D_n = \langle r, s | r^2, s^2, rsrs \rangle$. Let $\Phi : F_{\{r,s\}} \to D_n$ be a homomorphism such that $\Phi(f) = r^a$ and $\Phi(s) = r^b s$.

Then we can check that this agrees.

$$\Phi(r^n) = r^{an} = e$$

$$\Phi(s^2) = r^b s r^b s = r^b r^{-b} = e$$

$$\Phi(rsrs) = r^{a+b} s r^{a+b} s = e$$

As an exercise, check that this map is injective.

In this example, $\langle r \rangle$ was a characteristic subgroup.

Definition 12.2. A subgroup is **characteristic** if it is preserved by all automorphisms $(\varphi(N) \leq N \text{ for all } \varphi)$.

Remark 12.1. Even if $K \leq N$ and $N \leq G$, we cannot conclude that $K \leq G$. However, if $K \leq N$ is characteristic and $N \leq G$ is characteristic, then $K \leq G$ is characteristic.

Lemma 12.1. Let G be a group.

- 1. Z(G) is characteristic in G.
- 2. $G' = [G, G] = \langle [x, y] | x, y \in G \rangle$ is characteristic in G.

Proof. Let's prove the second statement. If ϕ is an automorphism, $\varphi([x, y]) = [\varphi(x), \varphi(y)] \in G'$.

12.2 The second and third isomorphism theorems

For $H, K \leq G$, let $HK = \{hk : h \in H, k \in K\}$. This may not be a subgroup of G. When is it a subgroup?

Lemma 12.2. $HK \leq G$ if and only if HK = KH.

Proof. If $KH \subseteq HK$, then $kh \in HK$ for all $k \in K, h \in K$. So $KH \subseteq HK$. This means that for $k \in K, h \in H$, there exists $h' \in H$ and $k' \in K$ such that kh = h'k'. So then $h_1k_1 \cdots h_rk_r = h_k$ for some $h \in H$ and $k \in K$ by moving all the ks to the right. So $HK \leq G$.

Now observe that $(h^{-1}k^{-1}) = (kh)^{-1} \in HK$. So if HK is group, then HK = KH. \Box

Theorem 12.2 (2nd isomorphism theorem). Let $K \leq G$ and $H \leq G$. Then $HK/K \cong H/(H \cap K)$.

Proof. Let $\varphi : H \to HK/K$ be $\varphi(h) = hK$. This is surjective, and ker $(\varphi) = H \cap K$. Now apply the first isomorphism theorem.

Theorem 12.3 (3rd isomorphism theorem). Let $K \leq G$, $H \leq G$, and $K \leq H$. Then $G/H \cong (G/K)/(H/K)$.

Proof. Let $\pi(gK) = gH$. This is a surjective homomorphism. Then $\ker(\pi) = \{gK : gH = H\} = H/K \leq G/K$. Then use the 1st isomorphism theorem.

12.3 Semidirect products

Let H, N be groups with a homomorphism $H \to \operatorname{Aut}(N)$.

Definition 12.3. The (external) semidirect product of N and H is $N \rtimes_{\varphi} H = N \times H$ with the group operation

$$(n,h)(n',h') = (n\varphi(h)(n'),hh').$$

Let's check that this is a group:

- 1. The identity is (e, e).
- 2. Inverses are given by $(n,h)^{-1} = (\phi(h^{-1})(n^{-1}),h^{-1}).$
- 3. Associativity is left as an exercise.

How does conjugation work in the semidirect product? We can identify $N \leq N \rtimes_{\varphi} H$ and $H \leq N \rtimes_{\varphi} H$ by $n \mapsto (n, e)$ and $h \mapsto (e, h)$. Then $NH = N \rtimes_{\varphi} H$. Then

$$hnh^{-1} = (e,h)(n,e)(e,h^{-1}) = (\phi(h)(n),h)(e,h^{-1}) = (\phi(h)(n),e)$$

Example 12.2. Aff $(\mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} (\mathbb{Z}/n\mathbb{Z})^{\times}$. The isomorphism is $\begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \mapsto (b, a)$. Here, $\varphi(a)(b) = ab$.

Example 12.3. $D_n \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$, where $\varphi(1)(a) = -a$.

Definition 12.4. Let $N \leq G$ and $H \leq G$ be such that $N \cap H = \{e\}$ and NH = G. Then G is the **internal semidirect product** $N \rtimes H$ of N and H.

Really, these are the same thing. $G = N \rtimes H \cong N \rtimes_{\varphi} H$, where $\varphi(h)(n) = hnh^{-1}$.

13 Krull-Schmidt, Structure of Finitely Generated Abelian Groups, and Group Actions

13.1 The Krull-Schmidt theorem

Theorem 13.1 (Krull-Schmidt). Suppose G has normal subgroups $N_i \leq G$ for $1 \leq i \leq r$. Then $G \cong N_1 \times \cdots \times N_r$ iff $N_i \cap \prod_{\substack{j=1 \ j \neq i}}^r N_j = \{e\}$ and $N_1 \cdots N_r = G$.

Proof. For r = 2, $N_1 \cap N_2 = \{e\}$ and $N_1N_2 = G$. Then if $n_i \in N_i$, $n_1n_2n_1^{-1} = n'_2 \in N_2$. Then $n_2n_1^{-1}n_2^{-1} = n_1^{-1}n'_2n_2^{-1} \in N_1$. But this is the product of something in N_1 and something in N_2 , and $N_1 \cap N_2 = \{e\}$, so $n'_2n_2^{-1} = e$. So $n'_2 = n_2$, which gives us that n_1 and n_2 commute. So $G = N \rtimes N_2 = N_1 \times N_2$.

Now induct on r. Suppose this is true for r. Then $N_1 \cdots N_r \cap N_{r+1} = \{e\}$ and $N_1 \cdots N_{r+1} = G$. By induction, $N_1 \cdots N_r = N_1 \times \cdots \times N_r$. Applying the r = 2 case, we get $G = N_1 \times \cdots \times N_r \times N_{r+1}$.

Corollary 13.1. Let $n = p_1^{r_1} \cdots p_k^{r_k}$ with p_i distinct primes and $r_i \ge 1$. Then

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{r_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_k^{r_k}\mathbb{Z}.$$

Corollary 13.2. If gcd(m, n) = 1, then

$$\mathbb{Z}/mn\mathbb{Z} \cong n\mathbb{Z}/mn\mathbb{Z} \times m\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}.$$

13.2 The structure theorem for finitely generated abelian groups

Definition 13.1. An abelian group is **torsion-free** if for all $a \in A \setminus \{0\}$ and $n \ge 1$, $na \ne 0$.

Definition 13.2. The **torsion subgroup** B of A is the subgroup of elements of A of finite order.

Theorem 13.2 (structure theorem for finitely generated abelian groups). Let A be a finitely generated abelian group. Then there exists a unique $r, k \ge 0$ and positive integers $n_i \ge 1$ with $n_k \mid n_{k-1} \mid \cdots \mid n_1$ such that

$$A \cong \mathbb{Z}^r \times \mathbb{Z}/n_1 \mathbb{Z} \times \cdots \mathbb{Z}/n_k \mathbb{Z}$$

Proof. We claim that torsion-free finitely generated abelian groups are free. Here is a sketch: Choose $a_1, \ldots, a_r \in A$ giving a minimal set of generators. We get $\pi : \mathbb{Z}^r \to A$ sending $e_i \mapsto a_i$, where e_i is the *i*-th coordiate unit element. Suppose $x = \sum_{i=1}^r b_i e_i \in \ker(\pi)$. Let $d = \gcd(b_1, \ldots, b_r)$. If $d \neq 1$, there exists a $y \in \mathbb{Z}^r$ with dy = x. Then $y \in \ker(\pi)$. So we may assume d = 1. There exists $\phi \in \operatorname{Aut}(\mathbb{Z}^r) = \operatorname{GL}_r(\mathbb{Z})$ such that $\phi(e_1) = x$. Then $\mathbb{Z}^r \xrightarrow{\phi} \mathbb{Z}^r \xrightarrow{\pi} A$ sends $e_1 \mapsto x \mapsto 0$. But then $\pi \circ \phi(e_i)$ for $2 \leq i \leq r$

generate A, contradicting minimality. So $A \cong \mathbb{Z}^r$. For uniqueness, if $A \cong \mathbb{Z}^r \cong \mathbb{Z}^s$, then $A/2A \cong \mathbb{F}_2^r \cong \mathbb{F}_2^s$, so r = s.

Let B be the torsion subgroup of A. Note that A/B is torsion-free. We get an exact sequence

$$0 \to B \to A \to \mathbb{Z}^r \to 0.$$

We want to go back from $\mathbb{Z}^r \to A$. Then for $e_i \in \mathbb{Z}^r$, there exists some $a_i \in A$ that maps to e_i . Since \mathbb{Z}^r is free in Ab, there exists $\iota : \mathbb{Z}^r \to A$ such that $\iota(e_i) = a_i$ for all i. Then $A \cong B \oplus \mathbb{Z}^r$. Let n_1 be the exponent of B (lcm of orders is the highest order in this case). Choose $b_1 \in B$ of order n_1 ; then $A \cong \langle b_1 \rangle \oplus A / \langle b_1 \rangle \cong \mathbb{Z}/n_1\mathbb{Z} \oplus A / \langle b_1 \rangle$. Repeat with n_2 , etc. We get $A \cong \mathbb{Z}/n_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_k\mathbb{Z}$. Uniqueness follows from the uniqueness of the exponent of a group.

Example 13.1. Here is an example of this decomposition.

 $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z} \oplus \mathbb{Z}/9\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}/360\mathbb{Z} \oplus \mathbb{Z}/36\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$

13.3 Group actions

Definition 13.3. A group action is a map $\cdot : G \times X \to X$ such that

- 1. $e \cdot x = x$,
- 2. $g \cdot (h \cdot x) = (gh) \cdot x$.

The pair of G with the action on X is called a G-set.

Remark 13.1. These are left *G*-sets. We can define right *G*-sets in a similar way.

Example 13.2. S_X acts on X by $\sigma \cdot x = \sigma(x)$.

Example 13.3. D_n acts on the vertices of a regular *n*-gon by rotating and reflecting them.

Example 13.4. $\operatorname{GL}_n(R)$ for a ring R acts on \mathbb{R}^n viewed as column vectors.

Definition 13.4. G-set is the category with objects a set X with a G-action $G \times X \to X$ and morphisms $f: X \to Y$ such that $f(g \cdot x) = g \cdot f(x)$ for all $x \in X$ and $g \in G$.

Definition 13.5. Te orbit of $x \in X$ is $G \cdot x = \{g \cdot x : g \in G\} \subseteq X$.

Remark 13.2. Being in the same orbit gives an equivalence relation on X.

Definition 13.6. The stabilizer is $G_x = \{g \in G : g \cdot x = x\} \subseteq G$.

Definition 13.7. *G* acts **transitively** on *X* if it has just one orbit $(G \cdot x = X \text{ for all } x \in X)$. *G* acts **faithfully** if no element of $G \setminus \{e\}$ fixes all $x \in X$; i.e. $\bigcap_{x \in X} G_x = \{e\}$.

Example 13.5. S_X acts transitively and faithfully on X. The stabilizer of $x \in X$ is $S_{X \setminus \{x\}}$, viewed as a subgroup of S_X .

Example 13.6. D_n acts faithfully and transitively on vertices/edges. The stabilizer of the vertex is the subgroup generated by reflection across the axis through 0 and the vertex.

Example 13.7. *G* acts faithfully and transitively on *G* by left multiplication but not necessarily by conjugation if $G \neq \{e\}$. With the action of conjugation, the orbits are conjugacy classes $C_x = \{gxg^{-1} : g \in G\}$. $Z(G) = \bigcap_{x \in X} Z_x \neq \{e\}$, where $Z_x = \{g \in G : gxg^{-1} = x\}$, so if $Z(G) \neq \{e\}$, then this is nontrivial.

Example 13.8. *G* acts on subsets $S \subseteq G$ by conjugation. The orbits are conjugate subsets. The stabilizer of *S* is $N_G(S)$, the **normalizer** of *S*. $N_G(S) = \{g \in G : gSg^{-1} = S\}$. Note that $N_G(S)$ acts on *S* by conjugation. So $\bigcap_{x \in S} Z_x = Z_G(S) = \{g \in G : gs = sg \ \forall x \in S\}$, which is called the **centralizer** of *S*.

14 Orbit-Stabilizer and Symmetric Groups

14.1 The orbit-stabilizer theorem

Theorem 14.1. Let X be a G-set. For each x, there is a bijection $\psi_x : G/G_x \to G \cdot x$ given by $gG_x \mapsto g \cdot x$ for $g \in G$.

Proof. Exercise.

Corollary 14.1.

$$[G:G_x] = |G \cdot x|.$$

Proposition 14.1 (class equation). Let T be the set of representatives of conjugacy classes in G. If G is finite,

$$|G| = \sum_{x \in T} [G : Z_x] = |Z(G)| + \sum_{x \in G \setminus Z(G)} [G : Z_x].$$

Proof. G acts on itself by conjugation, and the stabilizer of $x \in G$ is Z_x . The orbit of x is C_x , the conjugacy class of x. Then

$$|G| = \sum_{x \in T} |C_x| = \sum_{x \in T} [G : Z_x].$$

14.2 Action of symmetric groups

Let $\sigma \in S_n$. An element σ acts on $X_n = \{1, \ldots, n\}$.

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}.$$

Definition 14.1. A *k*-cycle $(k \le n)$ is the permutation

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_k \end{pmatrix} (i) = \begin{cases} a_{j+1} & i = a_j, i \le j \le k-1 \\ a_1 & i = a_k \\ i & \text{otherwise.} \end{cases}$$

Every permutation is a product of disjoint cycles, which commute.

Example 14.1.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 6 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 6 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix}$$

Definition 14.2. A transposition is a 2-cycle.

Proposition 14.2. Every cycle can be written as a product of transpositions.

Proof. Prove the following relationship by induction on n:

$$(a_1 \quad a_2 \quad \cdots \quad a_k) = (a_1 \quad a_2) (a_2 \quad a_3) \cdots (a_{n-1} \quad a_{n-2}).$$

How does conjugation work?

$$\sigma (a_1 \ a_2 \ \cdots \ a_k) \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \cdots \ \sigma(a_k))$$

Example 14.2. What is the centralizer of $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in S_5$? This is $\langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 4 & 5 \end{pmatrix} \rangle$.

Theorem 14.2. If $\sigma = \tau_1 \cdots \tau_r = \rho_1 \cdots \rho_s$ for transpositions τ_i and ρ_i , then $r \equiv s \pmod{2}$. *Proof.* Let $S_n \oslash \mathbb{Z}[x_1, \ldots, x_n]$ by $\sigma \cdot f(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. Let

$$p(x_1,\ldots,x_n) = \prod_{1 \le i < j \le n} (x_i - x_j).$$

Then $\tau \cdot p = \prod_{1 \leq i < j \leq n} (x_{\tau(i)} - x_{\tau(j)})$. If $\tau = (k \ \ell)$ with $k < \ell$, then $x_{\tau(i)} x_{\tau(j)}$ occurs with the sign in the product unless $i = k, j \leq \ell$ or $i \geq k, j = \ell$. So $\tau \cdot p = (-1)^{2(\ell-k)-1}p = -p$.

In general, $\sigma \cdot p = \operatorname{sgn}(\sigma)p$, where $\operatorname{sgn} : S_n \to \{\pm 1\}$ is a homomorphism, and $\operatorname{sgn}(\tau) = -1$ for any transposition τ . So $\operatorname{sgn}(\sigma) = (-1)^r = (-1)^s$, so $r \equiv s \pmod{2}$.

14.3 Alternating groups

In the above proof, we defined the **sign** of a permutation, which is ± 1 .

Definition 14.3. A permutation is **even/odd** if its sign is 1/-1.

Example 14.3. What is the sign of a cycle? sgn $\begin{pmatrix} 1 & \cdots & k \end{pmatrix} = (-1)^{k+1}$

Definition 14.4. The alternating group is $A_n = \ker(\operatorname{sgn}) = \{\sigma \in S_n : \sigma \text{ is even}\} \leq S_n$.

Note that $|A_n| = n!/2$ for $n \ge 2$.

Definition 14.5. A group is **simple** if it has no proper, nontrivial normal subgroups (and is nontrivial).

Example 14.4. A_4 is not simple. $\{(a \ b) \ (c \ d) : \{a, b, c, d\} = \{1, 2, 3, 4\}\} \cup \{e\} \leq A_4$

Theorem 14.3. A_5 is simple.

Proof. An element in A_5 must be e, a three cycle, a product of two two-cycles, or a five cycle. The centralizer of $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ in $A_5 = \langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 4 & 5 \end{pmatrix} \rangle \cap A_5 = \langle \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \rangle$. So $C_{(1\,2\,3)}$, the set of 3-cycles, has size 20. Similarly number of products of two 2-cycles is 15, and the number of five cycles is 12.

The conjugacy classes have order 1, 12, 12, 15, and 20. Every normal subgroup N is a union of conjugacy classes (including $\{e\}$) and has order dividing $|A_n| = 60$. The only way is to take $N = A_5$ or N = e.

Remark 14.1. An action $G \circlearrowright X$ can be thought of as a homomorphism $\rho : G \to S_X$. Then $\ker(\rho) = \bigcap_{x \in X} G_x$ is trivial if and only if the aciton is faithful. G acting on G by left multiplication gives us that $\rho : G \to S_G$ is injective. This is Cayley's theorem.

15 Simple Groups, Burnside's Formula, and *p*-Groups

15.1 Simple groups

Theorem 15.1. A_n is simple for $n \ge 5$.

Proof. Proceed by induction on n. We know this for n = 5. Assume it for n - 1 with $n \ge 6$. The intersection of the stabilizer of i and A_n is $G_i = (S_n)_i \cap A_n \cong A_{n-1}$ for $1 \le i \le n$, so G_i is simple. Let $N \le A_n$ with $N \ne \{e\}$. If there exists $i \in X_n = \{1, \ldots, n\}$ and $\tau \in N \setminus \{e\}$ with $\tau(i) = i$, then $N \cap G_i \ne \{e\}$ and $N \cap G_1 \le G_i$. So $N \cap G_i = G_i$; i.e. $G_i \le N$.

For any $\sigma \in A_n$ with $\sigma(i) = j$, we have $\sigma G_i \sigma^{-1} = G_j$. Then $\sigma = \begin{pmatrix} i & j \end{pmatrix} \begin{pmatrix} k & \ell \end{pmatrix}$ works for some $\{k, \ell\} \cap \{i, j\} = \emptyset$ since $n \ge 4$. So $G_j \le N$ since $N \le A_n$. So every product of 2 transpositions is in N since $n \ge 5$, so $A_n = N$.

Take $\tau \in N$. If there exists $\tau' \in N$ and $i \in X_n$ such that $\tau(i) = \tau'(i)$, then $\tau(\tau')^{-1}(i) = i$. Then $\tau = \tau'$, or $N = A_n$. Write τ as a product of disjoint cycles. There are 2 cases:

- 1. $\tau = (a_1 \cdots a_k) \cdots$ where $k \ge 3$: Pick $\sigma \in A_k$ such that $\sigma(a_1) = a_1, \sigma(a_2) = a_2, \sigma(a_3) \ne a_3$. Take $\tau' := \sigma \tau \sigma^{-1}$. This works.
- 2. $\tau = (a_1 \quad a_2) \cdots (a_{m-1} \quad a_m)$: Take $\sigma = (a_1 \quad a_2) (a_3 \quad a_5)$. Then $\tau' = \sigma \tau \sigma^{-1}$ works as well. So $\tau'(a_1) = \tau(a_1)$ but $\tau' \neq \tau$.

In general, the following theorem is true. We will not prove it.³

Theorem 15.2 (classification of finite simple groups). Every finite simple group is isomorphic to one of

- 1. $\mathbb{Z}/p\mathbb{Z}$ with p prime
- 2. (simple) group of Lie type
- 3. A_n for $n \geq 5$
- 4. one of 26 sporadic simple groups
- 5. the Tits group

15.2 Burnside's formula

For $g \in G$ and X a G-set, denote the set of fixed points of g as $X^g = \{x \in X : g \cdot x = x\}$. If $S \subseteq G$, let $X^S = \{x \in X : g \cdot x = x \forall g \in S\} = \bigcap_{g \in S} X^g$. Recall that the stabilizer of x is $G_x = \{g \in G : g \cdot x = x\} \subseteq G$. Then $g \in G_x \iff x \in X^g$.

³The proof is thousands of pages long.

Theorem 15.3 (Burnside's formula). Suppose G is finite, and X is a finite G-set. The number r of G-orbits in X is

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

Proof. Let $S = \{(g, x) : g \in G, x \in X, g \cdot x = x\}$. On one hand,

$$S = \coprod_{g \in G} \{ (g, x) : x \in X^g \},$$

which is in bijection with X^g . On the other hand,

$$S = \prod_{x \in X} \{ (g, zx) : g \in G_x \},\$$

which is in bijection with G_x . So

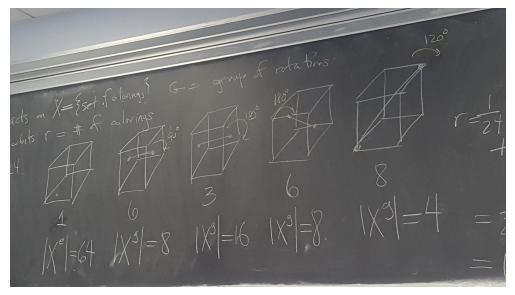
$$\sum_{g \in G} |X^g| = |S| = \sum_{x \in X} |G_x| = \sum_{x \in X} \frac{|G|}{|G \cdot x|} = |G| \sum_{x \in X} \frac{1}{|G \cdot x|}.$$

Each orbit appears $|G \cdot x|$ times in this sum. So we get

$$\sum_{g \in G} |X^g| = |G| \sum_{\text{orbit reps.}} 1 = |G|r.$$

This allows us to solve fun counting problems.

Example 15.1. How many ways are there to color the sides of a cube red and blue (that look different under rotations)? Let G be the group of rotations of a cube. G acts on X, the set of colorings of a cube. The number of orbits r is the number of colorings. |G| = 24. Let's write out what the elements are and the number of fixed points in each case.



So, by Burnside's formula,

$$r = \frac{1}{24}(64 + 6 \cdot 8 + 3 \cdot 16 + 6 \cdot 8 + 8 \cdot 4) = 10.$$

15.3 *p*-groups

Let p be prime.

Definition 15.1. A group G is a p-group if every element of G has a p-power order.

Example 15.2. $\mathbb{Z}/p^n\mathbb{Z}$ is a *p*-group.

Example 15.3. Q_8 and D_4 are 2-groups.

Example 15.4. Here is an infinite *p*-group. $\{a/p^n : 0 \le a \le p^n - 1, n \ge 1\} \subseteq \mathbb{Q}/\mathbb{Z}.$

Lemma 15.1. Let G have p-power order, and let X be a finite G-set. Then

 $|X| \equiv |X^G| \pmod{p}.$

Proof. Let S be a set of orbit representatives in X. Then

$$|X| = \sum_{x \in S} |G \cdot x| = \sum_{x \in S} [G : G_x] \equiv \sum_{x \in X^G} 1 = |X^G| \pmod{p},$$

where $X^G \subseteq S$ is the set of singleton orbits.

Theorem 15.4 (Cauchy). Let p be prime and G a finite group with $p \mid |G|$. Then G contains an element of order p.

Proof. Let $X = \{(a_1, \ldots, a_p) \in G^p : a_1 \cdots a_p = e\}$. Then $S_p \circlearrowright X$ by permuting the indices $\sigma(a_1, \ldots, a_p) = (a_{\sigma(1)}, \ldots, a_{\sigma(p)})$. Let $\tau = (1 \ 2 \ \cdots \ p)$. Then $H = \langle \tau \rangle$ acts on X such that $X^H = X^{\tau} = \{(a, a, \ldots, a) \mid a^p = e\}$. Note that $X^H \neq \emptyset$ since $(e, \ldots, e) \in X^H$. Also, $|X| = |G|^{p-1} \equiv 0 \pmod{p}$. By the lemma, $|X^H| \equiv 0 \pmod{p}$, so since $X^H \neq \emptyset$, X^H has another element; i.e. there exists $a \neq e$ with $a^p = e$.

Corollary 15.1. If G is a finite p-group, then G has p-power order.

Proposition 15.1. If G is a nontrivial finite p-group, then $Z(G) \neq \{e\}$.

Proof. If $Z(G) = \{e\}$, then the class equation gives

$$|G| = 1 + \sum_{x \in S} C_x = 1 + \sum_{x \in S} [G : Z_x] \equiv 1 \pmod{p},$$

where S is a set of representatives of nontrivial conjugacy classes. Since G has p-power order, we get |G| = 1.

Theorem 15.5. Every group of order p^2 is abelian.

Proof. Let $|G| = p^2$. If G is not abelian, then Z(G) has order p. Then $Z(G) = \langle a \rangle$, where a has order p. Let $b \notin \langle a \rangle$. Then b has order p, and $G = \langle a, b \rangle$. Note that b commutes with a because $a \in Z(G)$. But b commutes with itself, so $b \in Z(G)$. This is a contradiction. \Box

16 Sylow Theorems

16.1 Sylow *p*-subgroups

For this lecture, we will assume that a *p*-group is finite and of order p^k . Let *G* be a finite group. Take $p \mid |G|$ and say that $p^n \mid |G|$ if $p^n \mid |G|$ but $p^{n+1} \nmid |G|$.

Definition 16.1. A *p*-subgroup of *G* is a subgroup of order p^k for some $k \leq n$.

Definition 16.2. A Sylow *p*-subgroup of G is a *p*-subgroup of G which is not properly contained in any other *p*-subgroup.

Example 16.1. The symmetric group S_5 has order $120 = 2^3 \cdot 3 \cdot 5$. For p = 5, a Sylow 5-subgroup will look like $\langle (a_1 \ a_2 \ a_3 \ a_4 \ a_5) \rangle$. There are 6 = 4!/4 of these, For p = 3, a Sylow 3-subgroup will look like $\langle (a_1 \ a_2 \ a_3) \rangle$. There are 10 of these. For p = 2, a Sylow 2-subgroup will look like $\langle (a_1 \ a_2 \ a_3 \ a_4), (a_1 \ a_3) \rangle$. There are 15 of these.

Observe that the number of each type of Sylow p-subgroup divides the order of the group. In general, this is unusual.

16.2 Sylow theorems

Let $n_p(G)$ be the number of *p*-Sylow subgroups of *G*, and let $\text{Syl}_p(G)$ be the set of Sylow *p*-subgroups of *G*. Our goal will be to prove the following.

Theorem 16.1 (Sylow theorems). Let G be a finite group.

- 1. Every Sylow p-subgroup of G has order p^n , where $p^n || |G|$.
- 2. Any two Sylow p-subgroups are conjugate.
- 3. $n_p(G) \mid |G|$, and $n_p(G) \equiv 1 \pmod{p}$.

Recall that if P is a p-group, X is a finite set, and $P \circlearrowright X$, then $|X| \equiv |X^p| \pmod{p}$.

Lemma 16.1. Let G be finite, and let H be a p-subgroup of G. Then

$$[G:H] \equiv [N_G(H):H] \pmod{p}.$$

Proof. Let L = G/H be the set of right cosets of H. Then |L| = [G : H]. $H \circlearrowright L$ by $h \cdot (aH) = (ha)H$. If $aH \in L^H$, then for all $h \in H$, haH = aH, which means that $a^{-1}haH = H$, which is the same thing as $a^{-1}ha \in H$ for all $h \in H$.

Theorem 16.2. If $H \leq G$, and $|H| = p^k$ for k < n, then there is some $P \leq G$ with $H \leq P$ and $|P| = p^{k+1}$.

Proof. If $|H| \neq p^n$, then $p \mid [G:H]$, so $p \mid [N_G(H):H] = |N_G(H)/H|$. So $N_G(H)/H$ has a subgroup P/H of order p. Then $P \leq N_G(H)$, and $|P| = p^{k+1} = |P/H||H|$. So $H \leq P$. \Box

This proves the first Sylow theorem. Let's prove the second theorem.

Proof. Take $P, Q \in \operatorname{Sly}_p(G)$. We know that $|P| = |Q| = p^n$. Let $Q \circlearrowright G/P$. Since $p \nmid |G/P|$, $p \nmid |(G/P)^Q|$. So $(G/P)^Q \neq \emptyset$, and we get some xP such that qxP = xP for all $q \in Q$. This means that $(x^{-1}qx)P = P$, so $x^{-1}qx \in P$ for all $q \in Q$. So $x^{-1}Qx \subseteq P$. Since P and $x^{-1}Qx$ have the same order, $x^{-1}Qx = P$.

Now let's prove the third Sylow theorem.

Proof. Let $G
ightharpoonup \operatorname{Syl}_p(G)$ by conjugation. By the second Sylow theorem, this action is transitive. Let P be a Sylow p-subgroup of G. By orbit-stabilizer,

$$n_p(G) = |\operatorname{Syl}_p(G)| = [G : \operatorname{Stab}(P)] = [G : N_G(P)].$$

We have that

$$[G:P] = [G:N_G(P)][N_P(G):P]$$

and

$$[G:P] \equiv [N_G(P):P] \not\equiv 0 \pmod{p},$$

 \mathbf{SO}

$$[G:N_G(P)] \equiv 1 \pmod{p}.$$

Example 16.2. Let |G| = 42. We will show that G has a nontrivial normal subgroup. $n_7(G) \mid 42$ and $7 \nmid n_7(G)$, so $n_7(G) \mid 6$. So $n_7(G) = 1$. So if |H| = 7, then $H \leq G$.

Example 16.3. Let |G| = 30. We show that G has a nontrivial normal subgroup. Then G has 9 nontrivial normal subgroups. $n_5(G) \mid 30$, so $n_5(G) \mid 6$. Then $n_5(G) = 1$ or 6. Similarly, $n_3(G) \mid 10$, so $n_3(G) = 1$ or 10. Assume that $n_5(G), n_3(G) > 1$. Then we have 6 5-subgroups. Each one has 4 elements of order 5. So there are 24 elements of order 5. If $n_3(G) = 10$, there are 20 different elements of order 3. This is impossible because 24 + 20 > 30.

17 Applications of the Sylow theorems

17.1 Groups of order p^n , pq, and p^2q

Proposition 17.1. Groups of order p^n with n > 1 are not simple.

Proof. Assume for contradiction that G is simple. Note that Z(G) ||G|| and is nontrivial. So Z(G) = G, which makes G abelian. So G has order p.

Proposition 17.2. Groups of order pq with primes p < q have a normal subgroup of order q and are cyclic if $q \not\equiv 1 \pmod{p}$.

Proof. Note that $n_q(G) \mid p$, and $n_q(G) \equiv 1 \pmod{q}$. So $n_q(G) = 1$. By Sylow's theorem, $Q \leq G$, where Q is a Sylow-q subgroup. So PQ = G, and $P \cap Q = \{e\}$, so $G = Q \rtimes P$. This gives a homomorphism $\varphi : P \to \operatorname{Aut}(Q)$. Moreover, $\operatorname{Aut}(Q) = (\mathbb{Z}.q\mathbb{Z})^{\times} \cong \mathbb{Z}/(q-1)\mathbb{Z}$. The map φ is trivial unless $q \cong 1 \pmod{p}$. If it is trivial, then $G = P \times Q = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z} \cong \mathbb{Z}/pq\mathbb{Z}$.

Proposition 17.3. Groups of order 255 are cyclic.

Proof. Factor $255 = 3 \cdot 5 \cdot 17$. By the Sylow theorems, $n_17(G) = 1$, so we hav a normal Sylow 17-subgroup P such that $G/P \cong \mathbb{Z}/15\mathbb{Z}$. Look at $n_3(G)$ and $n_5(G)$. Note that $n_3(G) = 1$ or 85, and $n_5(G) = 1$ or 51. If $n_3(G) = 85$, we get $2 \cdot 85 = 170$ elements of order 3. If $n_5(G) = 51$, we have $4 \cdot 51 = 204$ elements of order 5. We cannot have both, so we either have a normal Sylow 3-subgroup or a normal Sylow 5-subgroup Q.

Then $PQ \leq G$, and R is a Sylow-4 or Sylow-3 subgroup. Then $G = PQ \rtimes R$, with a homomorphism $R \to \operatorname{Aut}(PQ)$. Since PQ is cyclic, $\operatorname{Aut}(PQ) \cong \mathbb{Z}/16\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/16\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. Since R has order prime to 2, this homomorphism is trivial. So we get $G = P \times Q \times R \cong \mathbb{Z}/255\mathbb{Z}$.

Proposition 17.4. Groups of order p^2q with p, q prime are not simple.

Proof. If p > q, then $n_p(G) \cong 1 \pmod{p}$ and $n_p(G) \mid q$, so $n_p(G) = 1$. If q > p. $n_q(G) = 1$ or p^2 . Assume $n_q(G) = p^2$. Then $p^2 \cong 1 \pmod{q}$, so $q \mid (q-1)$ or $q \mid p+1$. Since q > p, we cannot have $q \mid (p-1)$, so we must have $q \mid (p+1)$, which gives p = 2 and q = 3. So $n_2(G) = 3$, and $n_q(G) = 4$. So there are 8 elements of order 3 and at least 3 + 2 + 1elements of 2-power order. But this gives 14 elements, which is greater than $12 = 2^2 \cdot 3$. \Box

17.2 Subgroups of S_n

Proposition 17.5. Suppose that G is finite, simple, and $p \mid |G|$ (but $p \not||G|$). Then G is isomorphic to a subgroup of S_n , where $n = n_p(G)$.

Proof. G acts on $\operatorname{Syl}_p(G)$ by conjugation. There are n such Sylow p-subgroups, so this gives a homomorphism $\rho: G \to S_n$ such that $\ker(\rho) \leq G$. If $\ker(\rho) = 1$, then G is isomorphic to a subgroup of S_n . If $\ker(G) = G$, the action is trivial but also transitive. So there exists a unique, therefore normal, Sylow p-subgroup.

Proposition 17.6. There are no simple groups of order 160.

Proof. Factor $160 = 2^5 \cdot 5$. If G is simple and |G| = 160, the $n_5(G) = 16$ and $n_2(G) = 5$. So G is isomorphic to a subgroup of S_5 . But $|S_5| = 5! = 120$, which is a contradiction. \Box

Proposition 17.7. Let $H, K \leq G$ with H, K finite. Then $|HK| = |H||K|/|H \cap K|$.

Proof. Consider the bijection $H/(H \cap K) \to HK/K$. Finish the rest for homework. \Box

Proposition 17.8. There are no simple groups of order 48.

Proof. Factor $48 = 2^4 \cdot 3$. If G is simple, $n_2(G) = 3$. Let P, Q be Sylow 2-subgroups of G. Then $|P \cap Q| = |P||Q|/|PQ| = 256/|PQ|$. Since |PQ > 48, we get $|P \cap Q| > 4$. So $|P \cap Q| = 8$, which gives |PQ| = 32. Then $P \cap Q \leq P, Q$. So $N_G(P \cap Q) \geq PQ$ must equal G, and we get that $P \cap Q \leq G$.

This is a special case of the following proposition.

Proposition 17.9. Let $p^n \mid \mid |G|$, and suppose that $|P \cap Q| \le p^{n-r}$ for some $r \ge 1$ for all Sylow p subgroups $P \ne Q$. Then $n_p(G) \equiv 1 \pmod{p^r}$.

Proof. The idea is to show that $P \cap Q = P \cap N_G(Q)$. We will do this next time. \Box

18 Composition Series

18.1 Restrictions on simple groups

Lemma 18.1. Let P, Q be Sylow p-subgroups of a group G. $P \cap Q = P \cap N_G(Q)$.

Proof. Let $H = P \cap N_G(Q)$. We know that $H \leq N_G(Q)$, so HQ = QH. So $HQ \leq G$. Since $|HQ| = |H||Q|/|H \cap Q|$, HQ is a *p*-group. So $H \leq Q$ since *Q* is a Sylow *p*-subgroup. \Box

Proposition 18.1. Let G be a finite group and let $P^n \mid\mid |G|$ for $n \ge 1$. Assume that for all Sylow p subgroups $P \ne Q$, $|P \cap Q| \le p^{n-r}$. Then $n_p(G) = 1 \pmod{p^r}$.

Proof. $P \odot \text{Syl}_p(G)$ by conjugation. Note that $p^n \mid [P : P \cap Q] = [P : P_Q] = |\text{orbit of } Q|$. We can count

$$n_p(G) = \sum_{\text{orbits}} |\text{orbit}| \equiv 1 \pmod{p^r}.$$

Proposition 18.2. Every simple group of order 60 is isomorphic to A_5 .

Proof. Factor $60 = 4 \cdot 3 \cdot 5$. Then $n_5(G) = 6$, $n_3(G) = 4$ or 10, and $n_2(G) = 3, 5$ or 15. We cannot have $n_3(G) = 4$ or $n_2(G) = 3$. If $n_2(G) = 5$, then G is isomorphic to a subgroup of $S_5 \cong S_{\text{Syl}_2(G)}$. So the image of G has index 2. If $G \neq A_5$, then $G \cap A_5$ has index 2 in A_5 . Since subgroups of index 2 are normal, we get $G \cap A_5 \trianglelefteq A_5$, contradicting the fact that A_5 is simple. So in this case, $G \cong A_5$.

If $n_2(G) = 15$, then $15 \not\equiv 2 \pmod{4}$, so we have $P, Q \in \text{Syl}_2(G)$ with $|P \cap Q| = 2$. Then $N_G(P \cap Q) \supseteq PQ$. So $|N_G(P \cap Q)| > 4$ and is a multiple of 4 dividing 60. So $|N_G(P \cap Q)| \in \{12, 20, 60\}$. If $|P \lor Q| = 60$, then $N_G(P \cap Q) = G$, so $P \cap Q \trianglelefteq G$. If |M| = 12 or 20, then G acts on G/M, of order ≤ 5 . So G is isomorphic to a subgroup of S_3 or S_5 . S_3 is impossible because G is too large, and we have already treated the case of S_5 .

Proposition 18.3. There are no simple groups of order $396 = 4 \cdot 9 \cdot 11$.

Proof. If G is simple, then $n_{11}(G) = 12 = [G : N_G(P)]$, where P is a Sylow 11-subgroup. Then $|N_G(P)| = 33$. So G is isomorphic to a subgroup of S_{12} , and we get $N_G(P) \leq N_{S_{12}}(P)$. Then P is still Sylow 11 in S_12 , so $n_{11}(S_{12}) \mid 12!/33 = 10! \cdot 4$. We can count $n_{11}(S_{12}) = 12!/(11 \cdot 10) = 9! \cdot 12$. But $12 \nmid 40$, so we have a contradiction.

18.2 Composition series

Definition 18.1. Let G be a group. A series is a collection $(H_i)_{i \in \mathbb{Z}}$ of subgroups of G such that $H_{i-1} \leq H_i$ for all i.

Definition 18.2. A series is ascending if $H_i = 1$ for all *i* sufficiently small. A series is descending if $H_i = G$ for all sufficiently large *i*. A series is finite if it is both ascending and descending.

In the descending case, we often take $H_i \leq H_{i-1}$ and only deal with $i \geq 0$. If the series is finite and we write

$$1 = H_0 \le H_1 \le \dots \le H_{t-1} \le H_t = G$$

with $H_i \neq H_{i-1}$ for all *i*, then we say that t is the length of the series.

Definition 18.3. A finite series is **subnormal** if $H_{i-1} \trianglelefteq H_i$ for all *i*. A finite series is **normal** if $H_{i-1} \trianglelefteq G$ for all *i*.

Definition 18.4. A composition series is a subnormal series such that H_i/H_{i-1} are all simple or trivial. The H_i/H_{i-1} are called composition factors.

Example 18.1. In the composition series

$$1 \trianglelefteq A_5 \trianglelefteq S_5$$

the composition factors are S_5 and $\mathbb{Z}/2\mathbb{Z}$.

Example 18.2. In the composition series

$$1 \leq p^{n-1} \mathbb{Z}/p^n \mathbb{Z} \leq p^{n-2}/p^n \mathbb{Z} \leq \cdots \leq p \mathbb{Z}/p^n \mathbb{Z} \leq \mathbb{Z}/p^n \mathbb{Z}$$

the composition factors are all $\mathbb{Z}/p\mathbb{Z}$.

Example 18.3. In the composition series

$$1 \trianglelefteq \mathbb{Z}/2\mathbb{Z} \trianglelefteq (\mathbb{Z}/2\mathbb{Z})^2 \trianglelefteq A_4 \trianglelefteq S_4$$

the composition factors are $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$, and $\mathbb{Z}/2\mathbb{Z}$.

Lemma 18.2. Given a composition series and $N \leq G$,

- 1. We have a composition series $H_{f(i)} \cap N$ with $f: \{0, \ldots, s\} \to \{0, \ldots, t\}$ with f(0) = 0 with the *i*-th factor $H_{f(i)}/H_{f(i)-1} \cong H_{f(i)}/H_{f(i-1)}$
- 2. $\overline{H_i} = H_i/(H_i \cap N)$, and we have a composition series for G/N of the form $\overline{H_{f(i)}}$ with $f': \{0, \ldots, r\} \to \{0, \ldots, t\}$ increasing with f(0) = 0 and composition factors $H_{f'(i)}/H_{f'(i)-1}$
- 3. $\operatorname{im}(f) \cup \operatorname{im}(f') = \{0, \dots, t\}, \text{ and } r + s = t.$

19 The Jordan-Hölder Theorem and Solvable Groups

19.1 The Jordan-Hölder theorem

Last time we had a lemma which said that if $N \leq G$, then a composition series for N comes from a composition series for G by taking $H_i \cap N$ and eliminating duplicates. A composition series for G/N comes from H_iN/N and eliminating duplicates. If the composition series for N has length r, and the composition series for G/N has length s, then r + s = t, where t is the length of the composition series for G.

Lemma 19.1. Let $N \leq G$. There exists a 1 to 1 correspondence between subgroups of G containing N and subgroups of G/N.

Lemma 19.2. Let $N \subseteq G$ have composition series $1 = H_0 \subseteq \cdots \subseteq H_s = N$ and G/N have composition series $1 = Q_0 \subseteq \cdots \subseteq Q_r = G/N$. Then let H_{s+i} be the unique subgroup of G containing N with $N_{s+i}/N = Q_i$. Then $1 = H_0 \subseteq \cdots \subseteq H_t = G$ for t = r + s is a composition series for G, and $H_{s+i}/H_{s+i-1} \cong Q_i/Q_{i-1}$.

Theorem 19.1 (Jordan-Hölder). Let G be a finite group.

- 1. G has a composition series.
- 2. If $G \neq 1$ with two composition series $(K_i)_{i=0}^s$ and $(H_j)_{j=0}^t$, then s = t, and there exists $\sigma \in S_t$ such that $H_{\sigma(i)}/H_{\sigma(i)-1} \cong K_i/K_{i-1}$.

Proof. Proceed by induction on |G|. If G is simple, $1 \leq G$ is the only composition series, and we are done. If G is not simple, there there exists a proper normal subgroup $N \leq G$ with $N \neq 1$. By induction, N and G/N have composition series. By the lemma, G has a composition series, as well.

To prove the second statement induct on the minimal length s of a composition series $(K)_{i=0}^{s}$. If s = 1, then G is simple, so this case is done. Let $N = K_{s-1} \trianglelefteq G$. N has the composition series $(K_i)_{i=0}^{s-1}$. N also has the composition series $(H_{f(i)} \cap N)_{i=0}^r$ where $f : \{0, \ldots, r\} \to \{0, \ldots, t\}$ is increasing with f(0) = 0. By induction, r = s - 1, and there exists a $\sigma \in S_{s-1}$ such that $K_i/K_{i-1} \cong (H_{f(\sigma(i))} \cap N)/(H_{f(\sigma(i))-1} \cap N)$.

Let k < r be maximal such that $H_{k-1} \leq N$. Then $H_{k-1} \cap N = H_{k-1} \leq H_k \cap N < H_k$. So $H_{k-1} = H_k \cap N$, which implies that $k \notin \operatorname{im}(f)$. Then $H_k/H_{k-1} \cong H_k/(H_k \cap N) \cong H_kN/N = G/N$. If $(H_iN)/(H_{i-1}N) \neq 1$ for $i \neq k$, then G/N has composition series of length ≥ 2 , but G/N is simple. So r = t - 1.

19.2 Solvable groups

Definition 19.1. Let $G_{i\geq 0}^{(i)}$ be descending. The series $G^{(0)} = G$, $G^{(1)} = G' = [G, G]$, with general term $G^{(i+1)} = [G^{(i)}, G^{(i)}]$ for all $i \geq 0$ is called the **derived series** of G.

Definition 19.2. A group G is **solvable** if it has finite derived series.

Example 19.1. Abelian groups are solvable.

Example 19.2. Semidirect products of abelian groups are solvable. If $G = N \rtimes H$, then $G' \leq N$ and G'' = 1.

Example 19.3. Simple nonabelian groups are not solvable. If G is simple and nonabelian, then G' = G.

Example 19.4. Let R be a commutative ring. The Heisenberg group

$$H = \left\{ \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix} \right\} \subseteq \operatorname{GL}_3(R)$$

is solvable.

$$\left[\begin{bmatrix} 1 & x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \right] = \begin{bmatrix} 1 & 0 & xy \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

 \mathbf{SO}

$$H' = \left\{ \begin{bmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\} = Z(H),$$

and H'' = 1.

Proposition 19.1. The following are equivalent:

- 1. G is solvable.
- 2. G has a normal series with abelian composition factors.
- 3. G has a subnormal series with abelian composition factors.

Proof. We need only show that $3 \implies 1$. Let $1 = N_t \leq \cdots \leq N_1 \leq N_0$ with abelian composition factors. Then G/N_i is abelian iff $G' \leq N_i$. N_{i-1}/N_i is abelian, so $N_i \geq (N_{i-1})' \geq G^{(i+1)}$. So $G^{(t)} = 1$ so G is solvable.

Lemma 19.3. Let G be a group.

- 1. If G is solvable, then $H \leq G$ is solvable and G/N is solvable for $N \leq G$.
- 2. If $N \leq G$ and G/N are both solvable, then G is solvable.

Proposition 19.2. A group G with a composition series is solvable if and only if it is finite and its Jordan Hölder factors are all cyclic of prime order.

20 Schreier's Refinement Theorem and Nilpotent Groups

20.1 Schreier's refinement theorem

Definition 20.1. A refinement of a subnormal series $(H_i)_{i=0}^t$ os a subnormal series $(K_j)_{j=0}^s$ usch that there exists an increasing function $f : \{0, \ldots, t\} \to \{0, \ldots, s\}$ with $H_i = K_{f(i)}$ for all i.

Definition 20.2. Two subnormal series $(H_i)_{i=0}^t$ and $(K_j)_{j=0}^s$ are **equivalent** if s = t and there exists a permutation $\sigma \in S_t$ such that $H_i/H_{i-1} \cong K_{\sigma(i)}/K_{\sigma(i)-1}$ for all $i \in \{1, \ldots, t\}$

Theorem 20.1 (Schreier refinement theorem). Any two subnormal series in a group G have equivalent refinements.

Proof. Here is the idea of the proof. If $(H_i)_{i=0}^t$ and $(K_j)_{j=0}^s$ are subnormal series, let $N_{si+j} = H_i(H_{i+1} \cap K_j)$ for all $0 \le i < t$ and $0 \le j < s$ and $N_{st} = G$. This refines (H_i) . Do the same for (K_j) . To see that they are equivalent, use the butterfly (or Zassenhaus) lemma from homework.

20.2 Nilpotent groups

Definition 20.3. The lower central series of a group G is G = G. $G_{i+1} = [G, G_i]$, where $[G, G_i]$ is the subgroup generated by commutators, $\langle \{[a, b] : a \in G, b \in G_i\} \rangle$.

Definition 20.4. A group G is **nilpotent** if $G_n = 1$ for all sufficiently large n in the lower central series. The smallest n such that $G_{n+1} = 1$ is the **nilpotence class** of G

Example 20.1. Let $E_{i,j}(\alpha)$ be the elementary matrix $I + \alpha e_{i,j}$.

- 1. $E_{i,j}(\alpha)E_{i,j}(\beta) = E_{i,j}(\alpha + \beta).$
- 2. If $i \neq j$, $k \neq \ell$, and $i \neq \ell$, then

$$[E_{i,j}(\alpha), E_{k,\ell}(\beta)] = \begin{cases} E_{i,\ell}(\alpha\beta) & j = k\\ 0 & j \neq k \end{cases}$$

3. Let U be the group of upper triangular matrices with 1s along the diagonal. Then $U = \langle \{E_{i,j}(\alpha) : i < j, \alpha \in F\} \rangle$. $U_2 = U'$ is the subgroup of such matrices with 0s on the diagonal above the main diagonal. U_3 is the subgroup of such matrices with 0s on the 2 diagonals above the main diagonal. Continuing like this, we get $U_n = 1$.

Example 20.2. Let

$$G = \operatorname{Aff}(F) = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a \in F^*, b \in F \right\} \cong F \rtimes F^*,$$

where the subgroups in the direct product are the off-diagonal matrices (with 1s in the diagonal) and the subgroup of diagonal matrices.

$$\begin{bmatrix} \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & ab \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b(a-1) \\ 0 & 1 \end{bmatrix}.$$

 \mathbf{SO}

$$U = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} G, G \end{bmatrix}$$

if $F \not\cong F_2$. G'' = 1, and $G_n = U$ for all $n \ge 2$. So G is solvable but not nilpotent.

Definition 20.5. The upper central series $(Z^i(G))_{i\geq 0}$ of a group G is $Z^0(G) = 1$, $Z^i(G) = Z(G)$, and $G^{i+1}(G)$ is the inverse simage of $Z(G/Z^i(G))$ under the quotient map $G \to G/Z^i(G)$.

Proposition 20.1. G is nilponent if and only if the upper central series is finite. If n is minimal such that $G_{n+1} = 1$, then $G_{n+1-i} \leq Z^i(G)$ for all i, and $Z^n(G)$ is minimal such that $Z^n(G) = G$.

Proof. This is proven by induction. Here is the idea. Let $G = G_1 > G_2 > \cdots > G_n > G_{n+1} = 1$. Then $[G, G_n] = 1$, so $G_n \leq Z(G) = Z_1(G)$.

Example 20.3. Nilpotent groups can have different upper and lower central series. Look at $G = \mathbb{Z}/p\mathbb{Z} \times U$, where U is the set of upper triangular 4×4 matrices with 1s on the diagonal and entries in \mathbb{F}_p . Then $G_2 = U_2$, $G_3 = U_3$; and $G_4 = 1$. $Z^1(G) = Z(G) = \mathbb{Z}/p\mathbb{Z} \times U_3$, $Z^2(G) = \mathbb{Z}/p\mathbb{Z} \times U_2$, and $Z^3(G) = \mathbb{Z}/p\mathbb{Z} \times U_1 = G$.

Proposition 20.2. Finite p-groups are nilpotent.

Proof. Let P be a finite p-group. We induct on $|P| \neq 1$. Then $Z(P) \neq 1$, so P/Z(P) is a p-group o smaller order so it is nilpotent. Say $\overline{P} = P/Z(P)$ has niltpotence class n. Then $Z^n(P/Z(P)) = P/Z(P) = \overline{P}$. Let $|pi_i : P \to P/Z^i(P)$. Then $Z^{i+1}(P) = \pi_i^{-1}(Z(P/Z^i(P))) = \pi_i^1(Z(\overline{P}/(Z^i(P)/Z(P))))$. By induction, $Z^i(P)/Z(P) = Z^{i-1}(\overline{P})$, so this is equal to $\pi_1^{-1}(Z^{i+1}(P))$. So the smallest j such that $Z^j(P) = P$ is j = n + 1.

21 Frattini's Argument and Characterizations of Nilpotent Groups

21.1 Frattini's argument

Theorem 21.1 (Frattini's argument). Let G be a finite group, $N \leq G$, and let P be a Sylow p-subgroup of N. Then $G = NN_G(P)$.

Proof. If $g \in G$, then $gPg^{-1} \leq N$ (since $N \leq G$). So gPg^{-1} is Sylow p in N, and therefore, there exists some $n \in N$ such that $gPg^{-1}nPn^{-1}$. Then $n^{-1}g \in N_G(P)$. So $g \in NN_G(P)$.

21.2 Characterizations of nilpotent groups

Theorem 21.2. Let G be a finite group. The following are equivalent:

- 1. G is nilpotent.
- 2. If H < G, then $H < N_G(H)$.
- 3. If $P \in Syl_p$, then $P \trianglelefteq G$.
- 4. $G \cong \prod_{p \text{ prime}} P_p$, where P_p is a Sylow p-subgroup.
- 5. If M < G is a maximal proper subgroup (not contained in any other proper subgroup), then $M \leq G$.

Proof. (1) \implies (2): Suppose N < G. If $HZ(G) = G_{i}$ then $G = N_{G}(H)$, so $H < N_{G}(H)$. If $HZ(G) \neq G$, $N_{G}(HZ(G)) = N_{G}(H)$, so we may assume that $Z(G) \leq H$ (replace H by HZ(G)). Now H/Z(G) < G/Z(G). If G has nilpotence class n, then G/Z(G) has nilpotence class $\leq n - 1$. By induction, $H/Z(G) < N_{G/Z(G)}(H/Z(G))$. This is $N_{G}(H)/Z(G)$, so $H < H_{G}(H)$.

(2) \implies (3): If G is a p-group, then $G \leq G$, so we are done. If G is not a p-group, let $P \in \operatorname{Syl}_p(G)$ with P < G. Then $P \leq N = N_G(P)$, and P < N. P is unique of its order, so it is characteristic in N. So $P \leq N_G(N)$. So $N = N_G(N)$. By (2), N = G. So $P \leq G$.

(3) \implies (4): This is the Krull-Schmidt theorem.

(4) \implies (5): Let M < G be maximal, and suppose that p_1, \ldots, p_s are the distinct primes dividing |G|. If s = 1, then Sylow's theorems give us a subgroup of order p^{n-1} normal in G, where $|G| = p^n$. If s > 1, let P_1, \ldots, P_s be our Sylow p-subgroups. For M < G is maximal, we claim that there exists a unique i such that $M \cap P_i \neq P_i$. Existence is clear, and for uniqueness, $M < MP_i = G$, which forces $M \cap P_j = P_j$ for all $j \neq i$. Then $M \cong (M \cap P_i) \times \prod_{i \neq i} P_j$. Sylow's theorems imply that $M \cap P_i \leq P_i$, so $M \leq G$.

(5) \implies (3): Let $P \in \text{Syl}_p(G)$ with $P \not\leq G$. Then $N_G(P) \leq M < G$, where M is maximal. Then $M \leq G$, and $P \in \text{Syl}_p(M)$. By Frattini's argument, $G = MN_G(P) = M$. This is a contradiction.

(4) \implies (1): $G \cong \prod_{i=1}^{s} P_i$. Since *p*-groups are nilpotent, *G* is nilpotent.

Proposition 21.1. Let G be nilpotent, and let $S \subseteq G$ with image generating $G^{ab} = G/[G,G]$. Then S generates G.

Proof. Proceed by induction on the nilpotence class n. If n = 1, then $G = G^{ab}$. If $n \ge 2$, then $(G/G_n)^{ab} \cong G/(G_nG_2) \cong G^{ab}$. By induction, $\operatorname{im}(S)$ generates G/G_n . If $H = \langle S \rangle \le G$, then $G = G_nH$. $G_n \le Z(G)$, so $N_G(H) = G$. So $H \trianglelefteq G$. Then $G_n = [G_{n-1}, G] = [G_{n-1}, G_nH] = [G_{n-1}, H] \le H$ (since $H \trianglelefteq G$). So $G = G_nH = H = \langle S \rangle$. \Box

Theorem 21.3. If p is prime, then there exist exactly 2 isomorphism classes of nonabelian groups of order p^3 , represented by

- 1. if p = 2, D_4 and Q_8 ,
- 2. if p is odd, $\operatorname{Heis}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p^2\mathbb{Z})^2 \rtimes \mathbb{Z}/p\mathbb{Z}$ and

$$K = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \in \operatorname{GL}_2(\mathbb{Z}/p^2\mathbb{Z}) : a \equiv 1 \mod p \right\} \cong \mathbb{Z}/p^2\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/p\mathbb{Z},$$

where $\varphi(1)$ is multiplication by 1 + p.

Remark 21.1. Heis($\mathbb{Z}/2\mathbb{Z}$) $\cong D_4$. For p odd, Heis($\mathbb{Z}/p\mathbb{Z}$) has no elements of order p^2 .

[1	1	0	p	[1	p	$\binom{p}{2}$		[1	0	$\binom{p}{2}$	
0	1	1	=	0	1	p	=	0	1	0	
0	0	1	<i>p</i> =	0	0	1		0	0	1	

21.3 Linear groups

Lemma 21.1.

$$|\operatorname{GL}_{n}(\mathbb{F}_{q})| = (q^{n} - 1)(q^{n} - q) \cdots (q^{n} - q^{n-1}) = q^{n(n-1)/2} \prod_{i=1}^{n} (q^{i} - 1).$$
$$|\operatorname{SL}_{n}(\mathbb{F}_{q})| = q^{n(n-1)/2} \prod_{i=2}^{n} (q^{i} - 1).$$

Proof. For the order of $\operatorname{GL}_n(\mathbb{F}_q)$, we have $q^n - 1$ choices for the first column, then $q^n - q$ choices for the second columns, etc. since the columns must be linearly independent.

For $\mathrm{SL}_n(\mathbb{F}_q)$, we quotient out by the determinant map, which is onto \mathbb{F}_p^{\times} .

Definition 21.1. The projective special linear group is $PSL_n(F) = SL_n(F)/Z(SL_n(F))$. Proposition 21.2.

$$\operatorname{SL}_n(F) = \langle \{ E_{i,j}(\alpha) : \alpha \in F, i \neq j \} \rangle$$

22 Properties of Linear Groups

22.1 The special linear group $SL_n(F)$

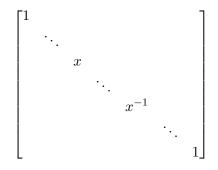
Let \mathbb{F}_q be the field with q elements, where q is a prime power. Later on, we will prove that a unique such field exists for each q.

Proposition 22.1. SL_n(F) is generated by elementary matrices $\{\{E_{i,j}(\alpha) : i \neq j, \alpha \in F\}$.

Proof. Let U be the unipotent group of upper triangular matrices with 1s as a diagonal. $U \leq B$, the Borel subgroup of upper triangular matrices. U is nilpotent. $U^{ab} \cong \mathbb{F}$, which is generated by the images of $E_{i,i+1}(\alpha)$. So U is generated by the elementary matrices.

 $\operatorname{GL}_n(F) = BWB$, where $W = \iota(S_n)$, where $\iota : S_n \to \operatorname{GL}_n(F)$ sends σ to its permutation matrix. In fact, $\operatorname{GL}_n(F) = \coprod_{w \in W} BwB$, and $G = \operatorname{SL}_n(F) = \coprod_{w \in \iota(A_n)} B'wB'$, where $B' = B \cap G$. So $B \cong U \rtimes F^n$, where F^n is thought of as the diagonal matrices.

It suffices to show that the diagonal matrices or determinant 1 and permutation matrices of determinant 1 are in the subgroup generated by elementary matrices. For diagonal matrices, it suffices to show that we can get matrices of this form:



with only 2 non-identity entries. Note that

$$[E_{1,2}(\alpha), E_{2,1}(\alpha)] = \begin{bmatrix} 1+\alpha & \alpha \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1+\alpha & -\alpha \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1+\alpha+\alpha^2 & -\alpha^2 \\ \alpha & 1-\alpha \end{bmatrix},$$

 \mathbf{SO}

$$E_{1,2}\left(\frac{\alpha^2}{1-\alpha}\right) \cdot \left[E_{1,2}(\alpha), E_{2,1}(\alpha)\right] \cdot E_{2,1}\left(\frac{-\alpha}{1-\alpha}\right) = \begin{bmatrix} (1-\alpha)^{-1} & 0\\ 0 & 1-\alpha \end{bmatrix}$$

To get permutation matrices, we do something like this:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} .$$

Proposition 22.2. The groups $\langle \{E_{i,j}(\alpha) : \alpha \in F\} \rangle$ are all conjugate.

Proof. Let σ be an even permutation. Then $\iota(\sigma)E_{i,j}\iota(\sigma)^{-1} = E_{\sigma(i),\sigma(j)}(\alpha)$; this is just a change of basis. The rest is an exercise.

Proposition 22.3. $SL_n(F) = [GL_n F, GL_n(F)]$ unless n = 2 and $F \cong \mathbb{F}_2$ or \mathbb{F}_3 .

Proof. Note that $E_{i,j}(\alpha) = [E_{i,k}(\alpha) \cdot E_{k,j}(\alpha)]$ with $k \neq i, j$ for $n \geq 3$. For n = 2, we have

$$\begin{bmatrix} \alpha & 0\\ 0 & \alpha^{-1} \end{bmatrix}, \begin{bmatrix} 1 & \beta\\ 0 & 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \alpha & \alpha\beta\\ 0 & \alpha^{-1} \end{bmatrix} \begin{bmatrix} \alpha^{-1} & -\alpha^{-1}\beta\\ 0 & \alpha \end{bmatrix} = \begin{bmatrix} 1 & (\alpha^2 - 1)\beta\\ 0 & 1 \end{bmatrix}$$

We can choose $\beta \neq 0$ and $\alpha^2 \neq 1$ with $\alpha \neq 0$ iff $F \cong \mathbb{F}_2$ or \mathbb{F}_3 .

Proposition 22.4. $SL_n(F)$ acts doubly transitively on the set of 1-dimensional subspaces of F^n .

Proof. Given pairs of distinct nonzero vectors $(v_1, v_2), (w_1, w_2)$ with $Fv_1 \neq Fv_2$ and $Fw_1 \neq Fw_2$, there exists an $A \in \operatorname{GL}_n(F)$ such that $Av_i = w_i$ for i = 1, 2. Follow this by the matrix sending $w_1 \mapsto \det(A)^{-1}w_1, w_2 \mapsto w_2$, and all other basis elements to themselves.

22.2 The projective special linear group $PSL_n(\mathbb{F}_q)$.

Theorem 22.1. $PSL_n(\mathbb{F}_q)$ is simple for $n \ge 2$, unless n = 2 and $q \in \{2, 3\}$.

Proof. Let P be the stabilizer of $\mathbb{F}_q e_1$ in $G = \mathrm{SL}_n(\mathbb{F}_q)$. These are matrices (with determinant 1) where the first column has zeros everywhere except the top left entry. P is maximal $\langle G, \text{ and } P = \coprod_{w \in P \cap \iota(A_n)} B'wB'$. Consider the subgroup $K \leq P$ of matrices with 1s on the diagonal and 0s above the diagonal except possibly for the first row.

Suppose $N \leq G$. If $N \leq P$, then $N = gNg^{-1}$ stabilizes $g \cdot \mathbb{F}_q e_1$ for all $g \in G$. So N stabilizes $\mathbb{F}_q e_i$ for all i. Also, N stabilizes $\mathbb{F}_q(e_i + e_j)$ for all $i \neq j$. So $N \subseteq Z(\mathrm{SL}_n(\mathbb{F}_q))$.

If $N \not\leq P$, then PN = G, since G is maximal. Then $KN/N \leq PN/N = G/N$, so $KN \leq G$. We have that $E_{1,j}(\alpha) \in K$ for all $\alpha \in \mathbb{F}_q$ and $j \geq 2$. So since KN is normal, $E_{i,j}(\alpha) \in KN$ for all $i \neq j$ and $\alpha \in F$ by our second proposition. Then G = KN by the first proposition. So $G/N \cong K/(K \cap N)$ is abelian. Then $N \geq G' = \mathrm{SL}_n(\mathbb{F}_q)$ by the third proposition. So N = G.

23 Principal Ideal Domains, Maximal Ideals, and Prime Ideals

23.1 Group extensions

Definition 23.1. A (short) exact sequence of groups is a sequence

 $1 \longrightarrow N \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} G \longrightarrow 1$

where ι is injective, π is surjective, and $\operatorname{im}(\iota) = \operatorname{ker}(\pi)$.

Definition 23.2. A group extension of G by N is a group E, where

 $1 \longrightarrow N \stackrel{\iota}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} G \longrightarrow 1$

is exact. If $E = N \rtimes_{\varphi} G$, we call it a **split extension**.

23.2 Simple rings and ideals

Proposition 23.1. A ring is a division ring iff it has no nonzero proper left ideals.

Proof. (\implies): Let $I \neq 0$ be a left ideal of R_{i} . If $r \in I \setminus \{0\}$, then $r \in R^{\times}$, so $1 \in I$. So I = R.

 (\Leftarrow) : Let $r \in R \setminus \{0\}$. Rr = R, so there exists some $u \in R$ such that ur = 1. Ru = R, so there exists some $s \in R$ such that su = 1. Then s = sur = r. Then r has a left and a right inverse, so $r \in R^{\times}$.

Definition 23.3. A ring with no nonzero proper (two-sided) ideals is called **simple**.

Example 23.1. Let D be a division ring, and let $M_n(D)$ be the ring of $n \times n$ matrices with entries in D. Let $e_{i,j}$ be the matrix with 0 in every entry but (i, j) and a 1 in the (i, j) coordinate. Then $M_n(D)e_{i,j}$ is the set of matrices which are 0 outside of the *j*-th column. Similarly, $e_{i,j}M_n(D)$ is the set of matrices which are 0 outside of the *i*-th row. So the two sided ideal $(e_{i,j}) = M_n(D)$.

To show that $M_n(D)$ is simple, let $A \in M_n(D) \setminus \{0\}$, and suppose that $a_{i,j} \neq 0$ for some i, j. Then $e_{i,i}Ae_{j,j} = a_{i,j}e_{i,j}$. Since $a_{i,j} \neq 0$, $a_{i,j} \in D^{\times}$, which means that $e_{i,j} \in (A)$. So $(A) = M_n(D)$.

Let I, J be ideals in a ring. Then IJ is the span of ab, with $a \in I$ and $b \in J$. In general, $IJ \subseteq I \cap J$.

Let (I_{α}) be a system of ideals, totally ordered under containment. Then $\bigcup_{\alpha} I_{\alpha}$ is an ideal (this is also true for left or right ideals).

Theorem 23.1 (Chinese remainder theorem). Let I_1, \ldots, I_k be "pairwise coprime," i.e. $I_j + I_i = R$ for $j \neq i$. Then

$$R/\bigcap_{i=1}^{k} \cong \prod_{i=1}^{k} R/I_i.$$

Proof. The proof is basically the same as the proof that $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}.m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_k\mathbb{Z}$, where $n = m_1 \cdots m_k$ and the m_i are coprime.

23.3 Principal ideal domains

Definition 23.4. A (left) zero divisor $r \in R \setminus \{0\}$ is an element such that there exists some $s \in \mathbb{R} \setminus \{0\}$ with rs = 0. A zero divisor is a left and right zero divisor.

Definition 23.5. A domain is a commutative ring without zero divisors.

Definition 23.6. A principal ideal domain (PID) is a domain in which every ideal is principal (generated by 1 element).

Example 23.2. \mathbb{Z} is a PID.

Example 23.3. If F is a field, then F[x] is a PID. How do we divide polynomials? There is a map deg : $F[x] \to \mathbb{Z}_{\geq 0} \cup \{-\infty\}$ such that deg $(f) \geq 0$ if $f \neq 0$ and deg(f) = 0 iff f is constant and nonzero. If $f, g \in F[x]$ with $g \neq 0$, then = qg + r, where $q, r \in F[x]$ and deg $(r) < \deg(f)$.

Proposition 23.2. If F is a field, then F[x] is a PID.

Proof. Let I be a nonzero ideal. Choose g in $I \setminus \{0\}$ for minimal degree. If $f \in I$, write f = qg + r with $r \in I$ and deg $(r) < \deg(g)$. Then r = 0, so $f \in (g)$. Hence, I = (g).

Definition 23.7. An element π of a commutative ring R is **irreducible** if whenever $\pi = ab$ with $a, b \in R$, either $a \in \mathbb{R}^{\times}$ or $b \in R^{\times}$.

Definition 23.8. Two elements $a, b \in R$ are **associate** if there exists $u \in R^{\times}$ such that a = ub.

Example 23.4. The irreducible elements in \mathbb{Z} are \pm primes.

Example 23.5. The irreducible elements in F[x] are the (nonconstant) irreducible polynomials.

If $f \in F[x]$, we get a function $f: F \to F$. But this does not necessarily go both ways. Let $f = x^p - x = x(x^{p-1} - 1)$, where $F = \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Then $f(\alpha) = 0$ for all $\alpha \in \mathbb{F}_p$, but $f \neq 0$ since $\deg(f) = p$.

23.4 Maximal and prime ideals

Definition 23.9. An ideal of a ring is **maximal** if it is proper and not properly contained in any proper ideal.

Definition 23.10. An ideal p of a commutative ring is **prime** if it is proper, and whenever $ab \in p$ for $a, b \in R$, then $a \in p$ or $b \in p$.

Proposition 23.3. Principal prime ideals in a domain are generated by irreducible elements.

Proof. If $p = (\pi)$ is prime and $ab = \pi \in (p)$, then either $a \in p$ or $b \in p$. So $a = s\pi$ or $b = t\pi$. Without loss of generality, $a = s\pi$. So $(bs - 1)\pi = 0$, which means that $b = s^{-1} \in \mathbb{R}^{\times}$. \Box

Example 23.6. In \mathbb{Z} and F[x], nonzero prime and maximal ideals are the same. However, in F[x, y], the ideal (x) is prime but not maximal. The ideal (x, y) is prime and maximal. In the ring $\mathbb{Z}[x]$, (p, x) is maximal if p is prime. But (p) and (x) are prime but no maximal.

Lemma 23.1. An element $m \subsetneq R$ is maximal iff R/m is a division ring. If R is commutative, then $p \subsetneq R$ is prime iff R/p is an integral domain.

Proof. The key is that ideals in R/I are in correspondence with ideals of R containing I. When I = m, if R/m is a division ring, then the ideals in R/m are 0, R/m. Then the only ideals in R containing m are m and R.

If p is prime, then $ab \in p$ implies that $a \in p$ or $b \in p$. So a + p = p or b + p = p. This is equivalent to $\overline{a}\overline{b} = (a+p)(b+p) = p$. If R/p is an integral domain, then $ab \in p \iff \overline{a}\overline{b} = 0$, so $\overline{a} = 0$ or $\overline{b} = 0$. This is equivalent to $a \in p$ or $b \in p$.

Lemma 23.2 (Zorn's lemma). Let X be a partially ordered set. Suppose that every chain (totally ordered subset) in X has an upper bound (an upper bound $x \in X$ of a set $S \subseteq X$ is such that $s \leq x$ for all $s \in S$. Then X has a maximal element ($x \in X$ such that if $y \in X$ and $x \leq y$, then y = x).

This is equivalent to the axiom of choice.

Theorem 23.2. Every ring has a maximal ideal.

Proof. Let X be the set of proper ideals in R. If $C \subseteq X$ is a chain, then $\bigcup_{N \in C} N$ is an upper bound for C. So X has a maximal element which is a maximal ideal. \Box

24 Artinian and Noetherian Rings

24.1 Maximal ideals

Theorem 24.1. Let I be an ideal of a ring R. Then there exists a maximal ideal of R containing I.

Proof. Let X be the set of proper ideals of R containing R. If C is a chain in X, $N = \bigcup_{J \in C} J$ is and ideal containing I, and $1 \notin N$, so $N \neq R$. So \mathbb{C} has an upper bound. By Zorn's lemma, X has a maximal element, which is a maximal ideal containing I. \Box

Proposition 24.1. Maximal ideals in a commutative ring are prime.

Proof. We have already proved that m is maximal iff R/m is a simple ring and that in a commutative ring, p is prime iff R/p is an integral domain. If R is commutative, then R/m is a division ring.

Remark 24.1. (0) is prime iff R is a domain.

Example 24.1. $\mathbb{Z}[x]/(x) \cong \mathbb{Z}$, and $\mathbb{Z}[x]/(p) \cong \mathbb{F}_p[x]$.

24.2 Artinian and noetherian rings

Definition 24.1. Let (I, \leq) be a partially ordered set. A chain $a_1 \leq a_2 \leq a_3 \leq \cdots$ satisfies the **ascending chain condition (ACC)** if there exists some N such that $a_k = a_N$ for all $k \geq N$. A chain $a_1 \geq a_2 \geq a_3 \geq \cdots$ satisfies the **descending chain condition (DCC)** if there exists some N such that $a_k = a_N$ for all $k \geq N$.

Definition 24.2. An *R*-module is **noetherian** if its set of *R*-submodules satisfies the ACC. And *R* module is **artinian** if its *R* submodules satisfy the DCC.⁴

Definition 24.3. A ring is **left noetherian** (resp. **left artinian**) if it is noetherian (resp. artinian) as a left module over itself. A ring is **noetherian** (resp. **artinian**) if it is left and right noetherian (resp. artinian).

Example 24.2. The polynomial ring $F[x_1, x_2, x_3, ...]$ is not noetherian. It has the infinite ascending chain

$$0 \subsetneq (x_1) \subsetneq (x_1, x_2) \subsetneq (x_1, x_2, x_3) \subsetneq \cdots$$

Example 24.3. $F[x]/(x^n)$ is both artinian and noetherian. Check that all ideals of this ring have the form (x^i) for $0 \le i \le n$.

Proposition 24.2. Finite products of division rings are artinian and noetherian.

⁴Noetherian and artinian are words used so commonly that they are often not capitalized, like abelian.

Proposition 24.3. An R-module M is noetherian iff every submodule of M is finitely generated.

Proof. (\Leftarrow): Suppose $(N_i)_{i=1}^{\infty}$ is an ascending chain of *R*-submodules of *M*. Then $N = \bigcup_{i=1}^{\infty} N_i$ is an *R*-submodule of *M*. Then *N* is gnerated by $m_1, \ldots, m_k \in N$. Each $m_i \in N_{j_i}$ for some $j_i \geq 1$. Every m_i is in $N_{\max j_i}$. So $N_{\max j_i} = N$.

 (\Longrightarrow) : Let M be noetherian, and let $N \subseteq M$ be a submodule. If $N \neq 0$, then take $a_1 \in N \setminus (0)$. Set $N_1 = Ra_1$. If possible, take $a_i \in N \setminus N_i$, and set $N_{i+1} = N_i + Ra_{i+1} = R(a_1, \ldots, a_{i+1})$. Then

$$(0) = N_0 \subsetneq N_1 \subsetneq N_2 \subsetneq \cdots,$$

so this pocess must terminate; i.e. there exists some *i* such that $N_i = N$, and N_i is finitely generated.

Corollary 24.1. PIDs are noetherian.

Example 24.4. F[x] is noetherian.

Proposition 24.4. Let M be an R-module and N be an R-submodule of M. Then M is noetherian iff N and M/N are noetherian.

Proof. (\implies): If N is noetherian, then submodules of M are finitely generated. Then submodules of N are finitely generated, so N is Noetherian. Now let $A \subseteq M/N$ is an R-submodule and $\pi LM \to M/N$ be the quotient map. Then $\pi^{-1}(A)$ is finitely generated and π applied to the generators generate A.

 (\Leftarrow) : Let $P \subseteq M$ be an R submodule. Then $P \cap N \subseteq N$ and $(P+N)/N \subseteq M/N$ are submodules of N and M/N, so they are finitely generated. Note that $(P+N)/N \cong P/(P \cap N)$. If p_1, \ldots, p_k generated $P \cap N$ and q_1, \ldots, q_ℓ generate $P/(P \cap N)$, then we claim that $p_1, \ldots, p_k, q'_1 \in \pi_P^{-1}(\{q_1\}), \ldots, q'_\ell \in \pi_P^{-1}(\{q_\ell\})$ generate P, where $\pi_P : P \to P/(P \cap N)$. If $a \in P$, then $\pi_P(a) = \sum_{i=1}^{\ell} r_i q_i$ for $r_i \in R$, and then $a - \sum_{i=1}^{\ell} r_i q'_i \in P \cap N$. So it equals $\sum_{i=1}^{k} s_j p_j$, where $s_{-j} \in R$.

Corollary 24.2. If R is noetherian, then \mathbb{R}^n is noetherian for $n \in \mathbb{N}^+$.

Proof. Induct on n. The inductive step follows form $R^{n+1}/R \cong R^n$.

Proposition 24.5. Every finitely generated module over a left noetherian ring is noetherian.

Proof. Let M be a finitely generated R-module, where R is left-noetherian, and let the finite list of generators be $a_1, \ldots, a_n \in M$. R^n is a free R-module of rank n, so there exists a unique $\phi : R^n \to M$ such that $\phi(e_i) = a_i$ for all i. Then ϕ is onto. Let $N \subseteq M$ be a submodule, and consider the R-submodule $N' = \phi^{-1}(N) \subseteq R^n$. R^n is noetherian, so since N' is finitely generated, N is finitely generated.

Definition 24.4. A domain R is a **unique factorization domain (UFD)** if every element $a \in R \setminus \{0\}$ can be written as $a = u\pi_1 \cdots \pi_k$ with $u \in R^{\times}$, $\pi_i \in R$ irreducible, and if $a = vp_1, \ldots p_\ell$ with $v \in R^{\times}$ and $p_i \in R$ irreducible, then $k = \ell$ and there exists a permutation $\sigma \in S_k$ such that $\pi \sim p_{\sigma(i)}$ for all i.

25 Localization of Rings

25.1 Construction and properties

Let's say we have a commutative ring where not every element has a multiplicative inverse. How do we add in more elements to get a larger ring with some more inverses? We may not want to add in all inverses if we want to preserve the structure of the original ring.

Definition 25.1. A subset S of a ring R is **multiplicatively closed** if it closed under multiplication, $1 \in S$, and $0 \notin S$.

Lemma 25.1. Suppose R is commutative, and let $S \subseteq R$ be multiplicatively closed. The relation \sim on $R \times S$ given by $(a, s) \sim (b, t)$ iff there exists $r \in S$ such that rat = rbs is an equivalence relation.

Proof. Let's verify transitivity. Suppose $(a, s) \sim (b, t)$ and $(b, t) \sim (c, u)$, so there exist $r, q \in S$ such that rat = rbs and qbu = qct. Note that $rqt \in S$ since these elements are all in S. Then

$$(rqt)au = q(rat)u = q(rbs)u = rs(qbu) = rs(qct) = (rqt)cs.$$

Remark 25.1. If S contains no zero divisors, then $rat = rbs \implies at = bs$. So we can replace the condition in ~ with at = bs. his of this as a/s = b/t.

Definition 25.2. The equivalence class of (a, s) under \sim is denoted a/s (or $\frac{a}{s}$) The set of equivalence classes is $S^{-1}R$.

Theorem 25.1. $S^{-1}R$ is a commutative ring with addition and multiplication

$$\frac{a}{s} + \frac{b}{t} = \frac{at+bs}{st}, \qquad \frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}.$$

Proof. If $(a, s) \sim (a', s')$, we want that (at + bs)/(st) = (a't + bs')(s't). There exists $r \in S$ such that ras' = ra's. Then

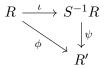
$$r(st+bs)s' = rats' + rbss' = ras'ts + rbss' = r(a't+bss')s.$$

Showing multiplication is well-defined is similar (and a bit easier, actually). The additive identity is 0/1, and the multiplicative identity is 1/1.

Remark 25.2. We have a homomorphism $\iota : R \to S^{-1}R$ with $\iota(r) = r/1$. This is injective iff S has no zero divisors. a/1 = b/1 means ra = rb. This means ra = rb if S has no zero divisors, and otherwise, we can find a, b, r such that ra = rb but $a \neq b$.

Remark 25.3. If $s \in S$ is a zero divisor and rs = 0 with $r \in R$. then 0 = 0/s = rs/s = r/1 = s, so $r \mapsto 0$ in $S^{-1}R$. But S maps into $(S^{-1}R)^{\times}$ because $s \cdot 1/s = 1$. Also, no elements get mapped to 0 because if s/1 = 0/1 = 0, then there exists some $r \in S$ with rs = 0, which is impossible because $0 \notin S$.

Remark 25.4. If $\phi : R \to R'$ is a ring homomorphism such that $\phi(S) \subseteq (R')^{\times}$, then there exists a unique homomorphism $\psi : S^{-1}R \to R'$ such that



given by $\psi(a/s) = \phi(a)\phi(s)^{-1}$.

25.2 Examples of localizations

Definition 25.3. Let R be a domain and $S = R \setminus \{0\}$ then $Q(R) := S^{-1}R$ is the **fraction** field, field of fractions, or **quotient field** of R. It is the "smallest" field containing R.

Example 25.1. Let F be a field. Q(F[x]) = F(x), the field of rational functions over F. These are f(x)/g(x) where $g \neq 0$.

Definition 25.4. Let $S = T \setminus (\{\text{zero divisors}\} \cup \{0\})$. Then $Q(R) = S^{-1}R$ is called the total ring of fractions.

Example 25.2. Let $R = \mathbb{Z} \times \mathbb{Z}$. You can check that $Q(R) = \mathbb{Q} \times \mathbb{Q}$. In fact, if $R = R_1 \times R_2$, then $Q(R) = Q(R_1) \times Q(R_2)$.

Example 25.3. Let R = F[x, y]/(xy), and $S = \{x^n : n \ge 0\}$. Then $S^{-1}R \cong F[x, x^{-1}]$, via the isomorphism $x \mapsto x$ and $y \mapsto 0$.

Definition 25.5. Let $S_p = S \setminus p$, where p is a prime ideal. The ring $R_p = S^{-1}pR$. is the localization of R at p.

Note that $pR_p \subseteq R_p$, so $(R_p)^{\times} = R_p \setminus pR_p$. So pRp is the unique maximal ideal in R_p .

Definition 25.6. A commutative ring with a unique maximal ideal is called a **local ring**.

Example 25.4. Let $p \in \mathbb{Z}$ be prime. Then $\mathbb{Z}_{(p)} = \{a/b \in Q : p \nmid b\}$.

Example 25.5. $F[x]_{(x)} = \{f/g : x \nmid g\}.$

Example 25.6. Let $x \in R$ be not a zero-divisor. Let $S = \{x^n : n \ge 0\}$. Then $R_x = S^{-1}R = \{a/x^n : a \in R, n \ge 0\}$. If R = F[x] and x = x, then $F[x]_x = F[x, x^{-1}] \subseteq F(x)$.

Proposition 25.1. Let $\iota: R \to S^{-1}R$ send $r \mapsto r/1$. Let $I \subseteq R$ be an ideal.

- 1. $S^{-1}I = \{a/s : a \in I, s \in S\}$ is an ideal of $S^{-1}R$.
- 2. $\iota^{-1}(S^{-1}I) = \{a \in R : Sa \cap I \neq \emptyset\}.$

3. If $J \subseteq S^{-1}R$, then $S^{-1} \cdot \iota^{-1}(J) = J$.

Proof. For part 1, a/s + b/t = (at + bs)/(st), where $at + bs \in I$ and $st \in S$. Then $r \cdot a/s = (ra)/s$, where $r \in I$ and $s \in S$.

For part 2, let $\phi(s) = b/s$, where $b \in I$, s in S, and $a \in R$. What properties must a have? Then a/1 = b/s iff there eixsts some $r \in S$ such that ras = rb. This is true for some b, s iff there exists some $r' \in S$ such that $r'a \in I$.

The proof of part 3 is left as an exercise.

26 Ideals of Localizations, Hilbert's Basis Theorem, and UFDs

26.1 Ideals of localizations

Let R be a commutative ring, and let S be multiplicatively closed. We have a map S^{-1} sending ideals of R to ideals of $S^{-1}R$. This is onto; that is, every ideal of $S^{-1}R$ arises this way. Suppose S has no 0-divisors. Then

$$I \mapsto S^{-1}I \iff I \in S^{-1}I \iff 1 = a/s, a \in I, s \in S \iff I \cap S = \emptyset.$$

Example 26.1. Let $S = S_p$ for p prime. Then $S_p \cap I = \emptyset \iff I \subseteq p$. This is because Rp is ocal; that is, pRp is the unique maximal ideal.

Example 26.2. Let $R = \mathbb{Z}$, and let $p \in \mathbb{Z}$ be prime. Then $\mathbb{Z}_{(p)} = \{a/b : a, b \in \mathbb{Z}, p \nmid b\} \subseteq \mathbb{Q}$. This has ideals $p^n \mathbb{Z}_{(p)}$, where $n \ge 0$.

26.2 Hilbert's basis theorem

Theorem 26.1 (Hilbert's basis theorem). Let R be a commutative noetherian ring. Then R[x] is noetherian.

Proof. Let $I \subseteq R[x]$ be an ideal. Let L be the set of leading coefficients of polynomials in I. We claim that L is an ideal of R. If $a \in L$, then a is the leading coefficient of $f \in I$. Then for $r \in R$, then $rf \in I$ has leading coefficient ra or $ra = 0 \in L$. If $a, b \in L$, then $f, g \in I$ with $f(x) = ax^n + \cdots$ and $g(x) = bx^m + \cdots$; without loss of generality, $n \ge m$, so $f + x^{n-m}g = (a+b)x^n + \cdots \in I$. So $a+b \in L$.

Since R is noetherian, $L = (a_1, \ldots, a_k)$, where $a_i \in R$. Let $f_i \in I$ have leading coefficients a_i and degree n_i , and let $n = \max\{n_i\}$. Let $L_m \subseteq R$ be the ideal of leading coefficients of polynomials of degree m and 0. Then $L_m = (b_{1,m}, \ldots, b_{\ell_m,m})$, since R is noetherian. Let $g_{i,m} \in I$ have degree m and leading coefficient $b_{i,m}$. Now let $J = (f_1, \ldots, f_k, g_{1,1} \cdots g_{\ell_0,0}, \ldots, g_{1,n}, \ldots, g_{\ell_n})$.

We claim that J = I. Let $h \in I$ have leading coefficient c. Write $c = \sum_{i=1}^{k} r_i a_i$ with $r_i \in R$. If $m = \deg(h) > n$, then set $h' = \sum_{i=1}^{k} r_i x^{m-n_i} f_i$. This has degree m, leading coefficient c, so $\deg(h - h') < m$. Repeat, so we can assume $\deg(h) \le n$. Then there exist $s_1, \ldots, s_{\ell_m} \in R$ such that $c = \sum_{i=1}^{\ell_m} s_i b_{i,m}$. So $h - \sum_{i=1}^{\ell_m} s_i g_{i,m}$ has degree < m. Repeat until we get degree zero.

Corollary 26.1. If R is noetherian, then $R[x_1, \ldots, x_n]$ is noetherian.

Definition 26.1. Let R be a ring. The center of R is $Z(R) = \{r \in R : rs = sr \forall s \in R\}$.

Definition 26.2. An algebra A over a commutative ring R is a ring A and a nonzero homomorphism of rings $R \to Z(A)$.

If R is a field, the homomorphism $R \to Z(A)$ is injective, and A is an R-vector space.

Example 26.3. $F[x_1, \ldots, x_n]$ is an algebra over R.

Example 26.4. The quaternions, $\mathbb{H} = \{a + bi + c_j + dl : a, b, c, d \in \mathbb{R}\}$ is an \mathbb{R} algebra. This is not a \mathbb{C} -algebra, but it contains \mathbb{C} .

Example 26.5. A finitely generated commutative algebra over a field is isomorphic to $F[x_1, \ldots, x_n]/I$, where I is an ideal.

Corollary 26.2. Any finitely generated algebra over a field (which is noetherian) is noetherian (as a ring).

 $F[(x_i)_{i \in I}]$ is the free object on I in the category of commutative F-algebras.

26.3 Unique factorization domains

Example 26.6. $\mathbb{Z}[\sqrt{-5}]$ is not a UFD. $6 = 23 = (1 + \sqrt{-5})(1 - \sqrt{5})$. The only units in $\mathbb{Z}[\sqrt{-5}]$ are ± 1 , so these factorizations really are different.

Definition 26.3. Let R be a UFD. An element $d \in R$ is a gcd of $a_1, \ldots, a_r \in R$ if $d \mid a_i$ for all i and if $d' \mid a_i$ for all i, ten $d' \mid d$.

Lemma 26.1. Let R be a UFD. Then a_1, \ldots, a_r have a gcd.

Proof. Take $\pi \mid a_1, \ldots, a_r$, and consider $a_1 \pi_1^{-1}, \ldots, a_r \pi_1^{-1}$. Repeat until there does not exist a $\pi_k \mid a_i \pi_1^{-1} \cdots \pi_{k-1}^{-1}$ for all *i*. Then $\pi_1 \cdots \pi_{k-1}$ is a gcd.

Lemma 26.2. Let R be a UFD. If $a \in R \setminus \{0\}$. Then (a) is maximal iff (a) is prime iff (a) is irreducible.

Proof. Let $a \notin R^x$. Then the existence of $b, c \notin R^{\times}$ such that a = bc is equivalent to $(b) \supseteq (a)$ for some $b \in R \setminus R^{\times}$. This is equivalent to $(a) \subseteq I \subseteq R$, which is equivalent to (a) not being maximal.

The rest is an exercise.

Theorem 26.2. A PID is a UFD.

27 Unique Factorization in PIDs and Polynomials, Gauss' Lemma, and Eisenstein's Criterion

27.1 Unique factorization in PIDs

Proposition 27.1. In a PID, every irreducible element generates a prime ideal.

Proof. If $a \in R^{\times}$ is irreducible, then $b \mid a \iff (a) \subsetneq (b) \subsetneq R$. Since R is a PID, a is maximal, and so it is prime.

Theorem 27.1. If R is a PID, R is a UFD.

Proof. Let $a \neq 0$ with $a \notin \mathbb{R}^{\times}$. If a is irreducible, we are done. Otherwise, write a = bc, where b, c are not units. If b, c are not irreducible, break them down into smaller pieces in the same way. Keep doing this until the process stops. Why must it stop? This is because R is noetherian.

For uniqueness of factorizations, suppose that $a = b_1 b_2, \ldots b_r = c_1 c_2 \cdots c_s$, where b_i, c_j are irreducible. We want to show that r = s, and there exists a permutation $\sigma \in S_r$ such that $b_{\sigma(i)} = c_i u_i$ for some unit u_i for each i. We know that b_1 generates a prime ideal, so $b_1 | c_1 \cdots c_r$. So $b_1 | c_i$ for some i, and we get that $c_i = b_i v$, where $v \in R^{\times}$ (since b_1, c_i are irreducible). By induction on r, we are done.

Is every PID a UFD?

Example 27.1. Look at k[x, y], where k is a field. This is a UFD, but it is not a PID. It is not a PID because the ideal (x, y) is not principal.

27.2 Gauss' lemma and unique factorization of polynomials over a UFD

Theorem 27.2. If R is a UFD, then so is R[x].

Corollary 27.1. If R is a UFD, then so is $R[x_1, \ldots, x_n]$.

The idea is this: Let Q(R) be the quotient field of R. Then Q(R)[x] is a PID and hence a UFD. We will try to factor the polynomial in Q(R)[x] and bring that factorization back down to R[x].

Definition 27.1. If $f \in R[x]$, the **content** of f is the ideal generated by the gcd of its coefficients.

Example 27.2. If $f = a_0 + a_1 x + \dots + a_n x^n$, then $c(f) = (\gcd(a_1, \dots, a_n))$.

Definition 27.2. f is primitive if c(f) = R.

Lemma 27.1. If $f \in R[x]$, then f(x) = cg(x), where $c \in R$ and g(x) is primitive.

Lemma 27.2 (Gauss). If $f(x), g(x) \in R[x]$ are primitive, so is f(x)g(x).

Proof. Take π irreducible such that $\pi \mid c(fg)$. Write $f(x) = a_0 + a_1x + \cdots + a_nx^n$ and $g(x) = b_0 + b_1x + \cdots + b_mx^m$. Take r, s minimal such that $\pi \nmid b_r, c_s$. Then $f(x)g(x) = a_0b_0 + \cdots + (a_0b_{r+s} + a_1b_{r+s-1} + \cdots + a_rb_s + \cdots + a_{r+s}b_0)x^{r+s} + \cdots$. Then π divides all these terms in the coefficient of x^{r+s} except a_rb_s . Then $\pi \mid a_rb_s$, which is a contradiction. \Box

Proposition 27.2. Let f(x) = f(x)h(x) with $g, h \in Q(R)[x]$. Then $f(x) = f_1(x)h_1(x)$, where $g_1, h_1 \in R[x]$, $\deg(g_1) = \deg(g)$, and $\deg(h_1) = \deg(h)$.

Proof. Take $r, s \in R$. Then $rg(x), sh(x) \in R[x]$. Then rsf(x) = (rg(x))(sh(x)). Let $g_0 = rg$ and h - 0 = sh. Then $f(x) = cf_2(x), g_0(x) = dg_2(x)$, and $h_0(x) = eh_2(x)$, where f_2, g_2, h_2 are primitive. Then $f_2 = g_2h_2$.

We can now prove the theorem.

Proof. If $g \in R[x] \subseteq Q(R)[x]$, factor $f(x) = g_1(x) \cdots g_r(x)$ where $g_1, \ldots, g_r \in R[x]$ are irreducible in Q(R)[x]. Then $f(x) = ch_1(x) \cdots h_r(x)$, where $c \in R$ and h_1, \ldots, h_r are primitive. Since R is a UFD, $c = \pi_1 \cdots \pi_s$, where the π_1 are irreducibles.

To get uniqueness, let $\pi'_1 \cdots \pi'_s h'_1(x) \cdots h'_r(x)$ be another factorization. If we look at the content, we get $(\pi_1 \cdots \pi_s) = (\pi'_1 \cdots \pi'_s)$. Since *R* is a sUFD, ss = s'. So $(\pi_i) = (\pi'_{\sigma(i)})$ for some σ . We can do the same for the h'_i .

27.3 Eisenstein's criterion

How can we tell if $f(x) \in k[x]$ is irreducible?

Theorem 27.3 (Eisenstein). Suppose $f \in R[x]$, and let $\mathfrak{p} \subseteq R$ be a prime ideal. Write $f(x) = a_0 + \cdots + a_n x^n$. Assume $a_0, \ldots, a_{n-1} \in \mathfrak{p}$ but $a_0 \notin \mathfrak{p}^2$ and $a_n \notin \mathfrak{p}$. Then f is irreducible.

Proof. Let $\overline{f}(x) \in (R/\mathfrak{p})[x]$. Then $\overline{f}(x) = \overline{a}_n x^n$. If g(x)h(x) = f(x), then $\overline{g}(x)\overline{h}(x) = \overline{f}(x) = \overline{a}_n x^n$. Then $\overline{g}(x) = \overline{b}_m x^m$ and $\overline{h}(x) = \overline{c}_k x^k$ with m, k > 0. This is a contradiction.

Example 27.3. Look at the cyclotomic polynomial $\Phi_p = 1 + x + \dots + x^{p-1} = (x^p - 1)/x - 1$. Then $\Phi_p(x+1) = (x^{p-1} + px^{p-2} + \dots + p)$, so it is irreducible.